

STEUERUNG

dc1500 AB286A5400 dc1550

AB386A5420

BETRIEBSANLEITUNG MIT PARAMETERLISTE

Nr. 401280 deutsch

Efka FRANKL & KIRCHNER **GMBH & CO KG**

Efka EFKA OF AMERICA INC.

Efka **EFKA ELECTRONIC MOTORS** SINGAPORE PTE. LTD.

INHALT	Seite
1 Wichtige Sicherheitshinweise	7
2 Verwendungsbereich	8
2.1 Bestimmungsgemäße Verwendung	8
3 Lieferumfang	8
3.1 Sonderzubehör	8
4 Inbetriebnahme	9
5 Steckverbindungen	9
6 Anschlussplan	10
7 Schnittstellen-Definition	13
7.1 Baudraten-Auswahl	13
7.2 Protokoll 7.3 Timeout vor "NAK" senden	13
7.3 Timeout vor "NAK senden 7.4 Byte to Byte Timeout	13 13
7.5 Kommunikations-Überwachung (Systemwerte D, Gruppe E)	14
7.6 Steuerzeichen	14
7.7 Sonderzeichen7.8 Stellaufforderung	14 14
7.9 Sendeaufforderung	14
7.10 Text	14
7.11 Stopp-Eingang 7.12 Fehler-Ausgang	15 15
8 Parameter	15
8.1 Besonderheiten 8.2 Bit-Erklärungen	19 19
8.2.1 "RDY" – Bit 5 im Status-Byte 1	19
8.2.2 "NPE" – Bit 6 im Status-Byte 1	20
8.2.3 "P1E, P1A, P2E, P2A, P3E, P3A" im Status-Byte 2	20
8.2.4 "PSYN" – Bit 7 im Status-Byte 1 8.2.5 "P2T" – Bit 0 im Steuer-Byte 2	20 20
8.2.6 "2N" – Bit 1 im Steuer-Byte 2	20
8.2.7 "ZSTP_" – Bit 2 im Steuer-Byte 2	20
8.2.8 "PNLIM" – Bit 5 im Steuer-Byte 2	20
8.3 Funktionsbeschreibungen8.3.1 Vorhaltewinkel für Positionierung (Systemwerte C, Gruppe 7)	20 20
8.3.2 Nachlaufwinkel für Positionierung (Systemwerte D, Gruppe E)	21
8.3.3 Zielpositionierung	21
8.4 Übersicht der Parameter 9 ASCII Übertragung	22 23
10 Listen Aufruf	23
11 Interrupt-Steuerung	25

12 Beispiele für d	lie serielle Übertragung	26
12.1 Netz Ein 12.2 Betrieb		26 26
13 Positionseins	tellungen	29
14 Akustische Me	eldungen	30
14.1 Akustische14.2 Akustische	Fehlermeldungen Meldung der Moduladresse	30 30
15 Anschlussbei	spiele	31
15.2 Reset mit C	• • • •	31 31
15.4 Signale U/D	Signale IRQ1 und IRQ2 D, SYN und G1	32 32
15.6 Differentiell	Signale POS1 und FEHLER le Signalverbindung	32 33
	ragung RS485 mit einem Antrieb ragung RS485 mit mehreren Antrieben	33 34
15.9 Abschlussv	viderstand aktivieren / deaktivieren ationssignal für Positionierung	34 35

1 Wichtige Sicherheitshinweise

Bei Verwendung des EFKA-Antriebs und seiner Zusatzeinrichtungen (z. B. für Nähmaschinen) müssen alle grundlegenden Sicherheitsvorschriften, einschließlich der nachstehenden, immer befolgt werden:

- Lesen Sie alle Anweisungen vor Gebrauch dieses Antriebs gründlich durch.
- Der Antrieb, seine Zubehörteile und Zusatzeinrichtungen dürfen erst nach Kenntnisnahme der Betriebsanleitung und nur durch hierfür unterwiesene Personen montiert und in Betrieb genommen werden.

Um das Risiko von Verbrennungen, Feuer, elektrischem Schlag oder Verletzungen zu reduzieren:

- Verwenden Sie diesen Antrieb nur seiner Bestimmung gemäß, und wie in der Betriebsanleitung beschrieben.
- Verwenden Sie nur die vom Hersteller empfohlenen oder in der Betriebsanleitung enthaltenen Zusatzeinrichtungen.
- Der Betrieb ohne die zugehörigen Schutzeinrichtungen ist nicht erlaubt.
- Nehmen Sie diesen Antrieb niemals in Betrieb, wenn ein oder mehrere Teile (z. B. Kabel, Stecker) beschädigt sind, die Funktion nicht einwandfrei ist, Beschädigungen erkennbar oder zu vermuten sind (z. B. nach Herunterfallen). Einstellungen, Störungsbeseitigung und Reparaturen dürfen nur von autorisierten Fachkräften durchgeführt werden.
- Nehmen Sie den Antrieb niemals in Betrieb, wenn die Lüftungsöffnungen verstopft sind. Achten Sie darauf, dass die Lüftungsöffnungen nicht durch Fusseln, Staub oder Fasern verstopfen.
- Keine Gegenstände in die Öffnungen fallen lassen oder hineinstecken.
- Antrieb nicht im Freien verwenden.
- Der Betrieb ist während des Gebrauchs von Aerosol-(Spray-)Produkten und der Zufuhr von Sauerstoff unzulässig.
- Um den Antrieb netzfrei zu schalten, Hauptschalter ausschalten und Netzstecker ziehen.
- Ziehen Sie niemals am Kabel, sondern fassen Sie am Stecker an.
- Greifen Sie nicht in den Bereich beweglicher Maschinenteile. Besondere Vorsicht ist z. B. in der Nähe der Nähmaschinennadel und des Keilriemens geboten.
- Vor Montage und Justage von Zusatzeinrichtungen und Zubehör, z. B. Positionsgeber, Rückdreheinrichtung, Lichtschranke usw., ist der Antrieb netzfrei zu schalten. (Hauptschalter ausschalten oder Netzstecker ziehen [DIN VDE 0113 Teil 301; EN 60204-3-1; IEC 204-3-1]).
- Vor dem Entfernen von Abdeckungen, Montieren von Zusatzeinrichtungen oder Zubehörteilen, insbesondere des Positionsgebers, der Lichtschranke usw. oder anderen in der Betriebsanleitung erwähnten Zusatzgeräten, ist die Maschine immer auszuschalten und der Netzstecker zu ziehen.
- Arbeiten an der elektrischen Ausrüstung dürfen nur durch Fachkräfte ausgeführt werden.

- Arbeiten an unter Spannung stehenden Teilen und Einrichtungen sind nicht erlaubt. Ausnahmen regeln die entsprechenden Vorschriften, z. B. DIN VDE 0105 Teil 1.
- Reparaturen dürfen nur von besonders geschultem Personal durchgeführt werden.
- Zu verlegende Leitungen müssen gegen die zu erwartende Beanspruchung geschützt und ausreichend befestigt sein.
- In der N\u00e4he von sich bewegenden Maschinenteilen (z. B. Keilriemen) sind Leitungen mit einem Mindestabstand von 25 mm zu verlegen. (DIN VDE 0113 Teil 301; EN 60204-3-1; IEC 204-3-1).
- Leitungen sollen zum Zweck der sicheren Trennung vorzugsweise räumlich getrennt voneinander verlegt werden.
- Vergewissern Sie sich vor Anschluss der Netzzuleitung, dass die Netzspannung mit den Angaben auf dem Typenschild der Steuerung und des Netzteils übereinstimmt.
- Verbinden Sie diesen Antrieb nur mit einem korrekt geerdeten Steckanschluss. Siehe Hinweise zur Erdung.
- Elektrisch betriebene Zusatzeinrichtungen und Zubehör dürfen nur an Schutzkleinspannung angeschlossen werden.
- EFKA DC-Antriebe sind überspannungsfest nach Überspannungsklasse 2 (DIN VDE 0160 § 5.3.1).
- Umbauten und Veränderungen dürfen nur unter Beachtung aller Sicherheitsvorschriften vorgenommen werden.
- Verwenden Sie zur Reparatur oder Wartung nur Originalteile.

Warnhinweise in der Betriebsanleitung, die auf besondere Verletzungsgefahr für die Bedienperson oder Gefahr für die Maschine hinweisen, sind an den betreffenden Stellen durch das nebenstehende Symbol gekennzeichnet.

Dieses Symbol ist ein Warnhinweis an der Steuerung und in der Betriebsanleitung. Es weist auf lebensgefährliche Spannung hin.

ACHTUNG – Im Fehlerfall kann in diesem Bereich auch nach dem Netz Ausschalten lebensgefährliche Spannung anliegen (nicht entladene Kondensatoren).

Der Antrieb ist keine selbständige funktionsfähige Einheit und zum Einbau in andere Maschinen bestimmt. Die Inbetriebnahme ist so lange untersagt, bis festgestellt wurde, dass die Maschine, in die der Antrieb eingebaut werden soll, den Bestimmungen der EG-Richtlinie entspricht.

Bewahren Sie diese Sicherheitshinweise gut auf.

2 Verwendungsbereich

Der Antrieb ist geeignet für Industrienähmaschinen und Nähautomaten verschiedener Fabrikate.

2.1 Bestimmungsgemäße Verwendung

Der Antrieb ist keine selbständig funktionsfähige Maschine. Er ist zum Einbau in andere Maschinen durch geschultes Fachpersonal bestimmt. Seine Inbetriebnahme ist so lange untersagt, bis festgestellt wurde, dass die Maschine, in die diese Teilmaschine eingebaut werden soll, den Bestimmungen der EG-Richtlinie (Anhang II Abschnitt B der Richtlinie 89/392/EWG und Ergänzung 91/368/EWG) entspricht.

Der Antrieb ist entwickelt und gefertigt worden in Übereinstimmung mit betreffenden EG-Normen:

EN 60204-3-1:1990

Elektrische Ausrüstung von Industriemaschinen:

Spezielle Anforderungen für Industrienähmaschinen, Näheinheiten und Nähanlagen.

Der Antrieb darf nur betrieben werden:

- an Nähfaden verarbeitenden Maschinen
- in trockenen Räumen

ACHTUNG

Bei Wahl des Montageortes und Verlegung des Anschlusskabels sind unbedingt die Sicherheitshinweise in Kapitel 1 zu beachten.

Insbesondere ist auf Einhaltung des Abstandes zu beweglichen Teilen zu achten.!

3 Lieferumfang

	Lieferumfang	AB268A	AB386A
1	Gleichstrommotor	DC1500	DC1550
1	Steuerung	AB286A5400	AB386A5420
	- Netzteil	N202	
1	Beipacksatz	B156	
	bestehend aus:	Satz Kleinteile	
		Dokumentation	
1	Zubehörsatz	Z56	
	bestehend aus:	Potentialausgleichslei	tung

Hinweis

Wenn kein metallischer Kontakt zwischen Antrieb (Motor) und Maschinenoberteil besteht, ist vom Maschinenoberteil zum vorgesehenen Anschlusspunkt der Steuerung die mitgelieferte Potentialausgleichsleitung zu verlegen!

3.1 Sonderzubehör

Externer Sollwertgeber Typ EB301A mit ca. 250 mm langer Anschlussleitung und 9 pol. SubminD-Stecker

Tischbefestigungswinkel für EB...

Zugstange 400...710 mm lang kpl.

Netzschalter Typ NS108

Verlängerungsleitung für Motoranschluss, ca. 1000 mm lang **Verlängerungsleitung** für Encoder, ca. 1000 mm lang

Nählichttransformator

9-pol. SubminD Stiftleiste
9-pol. SubminD Buchsenleiste
Helbackelergebärge für 0. ned Sakk

Halbschalengehäuse für 9-pol. SubminD

- Best. Nr. 4170023

Best. Nr. 206957Best. Nr. 1113054Best. Nr. 1113246

- Best. Nr. 1113150

- Best. Nr. 1113151

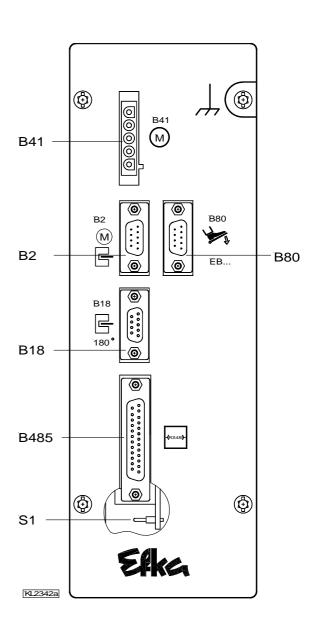
- bitte Netz- und Nählichtspannung (6,3V oder 12V) angeben

Best. Nr. 0504135Best. Nr. 0504136Best. Nr. 0101523

4 Inbetriebnahme

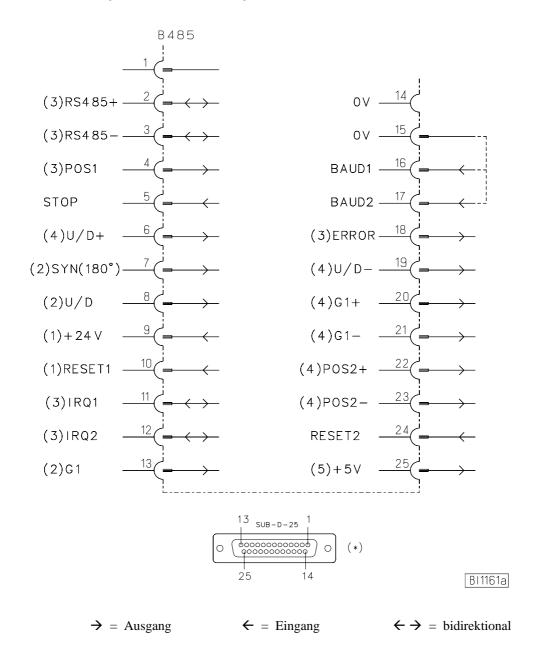
Vor Inbetriebnahme der Steuerung ist sicherzustellen, zu überprüfen, bzw. einzustellen:

- Die korrekte Montage von Antrieb, Positionsgeber und evtl. verwendetem Zubehör
- Die richtige Einstellung der Motordrehrichtung


5 Steckverbindungen

B2

Die für den Betrieb des Antriebs erforderlichen Befehle erfolgen von einem übergeordneten Rechner. Dafür ist eine Buchse mit RS485 Schnittstelle und weiteren Signalleitungen vorgesehen. Weiterhin verfügt die Steuerung über Buchsen zum Anschluss von Motor, Positionsgeber und externem Sollwertgeber.


B18	Anschluss für 180° Sensor
B41	Anschluss für Motorversorgung
B80	Anschluss für Sollwertgeber
B485	Anschluss für RS485 Schnittstelle und weitere Signalleitungen
S1	Brücke für Abschlusswiderstand (siehe Kapitel Abschlusswiderstand aktivieren/deaktivieren")
	Bei Auslieferung Brücke S1 geschlossen!

Anschluss für Positionsgeber im Motor

6 Anschlussplan

Anschlussbeispiele finden Sie in Kapitel 15!

Hinweis

Das Verbindungskabel vom Rechner zur Steuerung AB286A muss abgeschirmt sein!

Hinweis

Alle Eingänge und Ausgänge der Steuerung AB286A (Buchse B485) sind potentialfrei!

- 1) RESET 1 in Verbindung mit externer Nennspannung =24V, Leerlaufspannung max. =36V
- 2) Ausgang +5V, max. 15mA

Symbole:

- 3) TRI-STATE-Leitung (BUS-fähig)
- 4) Differentiell getriebene Ausgänge
- 5) Spannung +5V, $I_{max} = 200 \text{mA}$

POS1 Zählsignal Position 1

POS2+/POS2-Differenzialausgänge Position 2

STOP Eingang für den Stopp des Antriebs

SYN Synchronisationsfenster (180° Spur)

U/D Drehrichtung des Positionsgebers

(linksdrehend = low / rechtsdrehend = high)

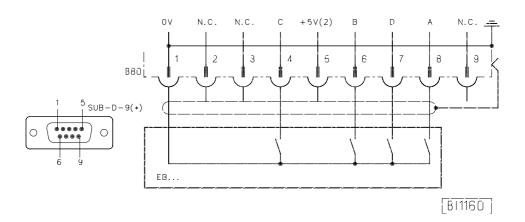
U/D+/U/D-Differentialausgänge der Drehrichtung des Positionsgebers

RESET 1 Reset 1 (low aktiv bei U = < 11V)

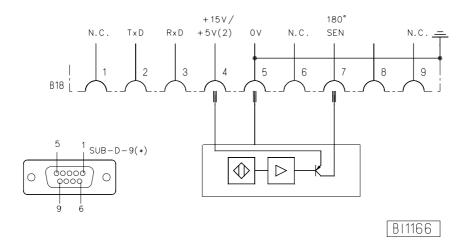
RESET 2 Reset 2 (low aktiv bei U = < 1,5V)

IRQ 1 Interrupt 1 (low aktiv)

IRQ 2 Interrupt 2 (low aktiv)


G1512 Impulse / Umdrehung

G1+/G1-Differentialausgänge 512 Impulse / Umdrehung


BAUD 1 Eingang 1 zur Einstellung der Baudraten (low aktiv)

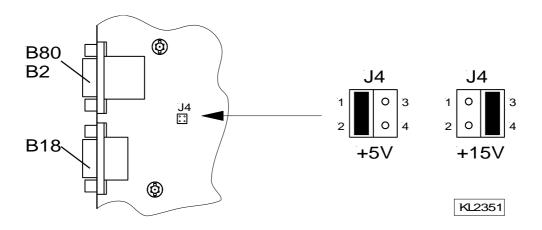
BAUD 2 Eingang 2 zur Einstellung der Baudraten (low aktiv)

FEHLER Fehlerausgang

EB... Befehlsgeber

180° SEN Externes Signal

TxD/RxD Keine Funktion (Es darf an dieser Buchse nichts angeschlossen werden!)


Für externe Geräte ist an der Buchse B18/4 eine Versorgungsspannung von +5V vorhanden. Diese lässt sich nach Öffnen des Deckels durch Umstecken einer auf der Leiterplatte angeordneten Steckleiste J4 auf +15V ändern.

ACHTUNG!

Vor Öffnen der Abdeckung ist unbedingt die Netzspannung auszuschalten und der Netzstecker abzuziehen!

+15V = Rechte Pins 3 und 4 mit Brücke verbinden +5V = Linke Pins 1 und 2 mit Brücke verbinden (Einstellung bei Auslieferung)

2) Nennspannung +5V, 100mA (umsteckbar auf +15V, 100mA)

7 Schnittstellen-Definition

Hinweis

Im BUS-System mit einem EFKA-Schnittstellenmotor müssen andere Module (z. B. I/O) eine Adresse kleiner als \$7F haben.

Hinweis

In der Steuerung ist ein BUS-Abschlusswiderstand von 100 Ohm vorgesehen. Deshalb muss die Steuerung als letztes Modul am RS485-BUS angeschlossen werden. Bei Anschluss mehrerer Steuerungen siehe Kapitel "Anschlussbeispiele".

7.1 Baudraten-Auswahl

Baudrate		Brücke im Stecker B3
125.000	Baud	Alle Pin's offen
41.667	Baud	Pin 16 mit Pin 15 (0V) verbinden
31.250	Baud	Pin 17 mit Pin 15 (0V) verbinden
9.600	Baud	Pin 16 und Pin 17 mit Pin 15 (0V) verbinden

7.2 Protokoll

- Die Übertragung erfolgt nach ISO 1745.
- Es sind nur die Befehle **Stellaufforderung** und **Sendeaufforderung** zugelassen.
- Die Steuerung wird mit der Adresse \$F0 ausgewählt (Preset-Wert). Bei Anschluss mehrerer Steuerungen sind weitere Adressen bis \$FF zugelassen.
- Die Übertragung erfolgt in **ASCII** (siehe auch Kapitel **ASCII-Übertragung**).
- Ein Wort = 10 Bit (1 Start-Bit, 8 Daten-Bit, 1 Stopp-Bit, kein Paritäts-Bit).

7.3 Timeout vor "NAK" senden

Nach Erkennen eines Fehlers wird die Quittung "NAK" erst nach einem Timeout gesendet. Die Länge des Timeouts in Abhängigkeit der Baud-Rate kann nachstehender Tabelle entnommen werden.

125.000 Baud	2 ms	Timeout
41.667 Baud	3 ms	Timeout
31.250 Baud	4 ms	Timeout
9.600 Baud	10 ms	Timeout

7.4 Byte to Byte Timeout

Wird innerhalb eines Telegramms ein Timeout von einem Wort zum nächsten Wort überschritten, wird NAK gesendet. Gleichzeitig wird im Kommunikations-Register (Parameter 00) das Bit 6 gesetzt. Die Länge des Timeouts in Abhängigkeit der Baud-Rate kann nachstehender Tabelle entnommen werden.

125.000 Baud	6 m	ns Time	out
41.667 Baud	8 m	ns Time	out
31.250 Baud	10 m	ns Time	out
9.600 Baud	22 m	ns Time	out

7.5 Kommunikations-Überwachung (Systemwerte D, Gruppe E)

Mit dem Parameter E3 kann ein Timeout für die Überwachung der Kommunikation eingestellt werden. Das Timeout kann im 10 Millisekunden Raster im Bereich von 0 bis 255 (maximal 2,5 Sekunden) eingestellt werden. Wird in diesen Parameter ein Wert ungleich Null eingetragen, so muss innerhalb der vorgegebenen Zeit eine Sende- oder Stellaufforderung an den Slave erfolgen. Bei Überschreitung des Timeouts stoppt der Antrieb in Position 2 und setzt das Bit 6 im Kommunikations-Register (Parameter 00). Das Timeout wird mit dem nächsten Telegramm nach der Stellaufforderung für den Parameter E3 gestartet. Das Deaktivieren dieser Überwachung ist möglich. Hierzu muss in den Parameter E3 der Wert Null eingetragen werden (Presetwert). Auch hier ist zu beachten, dass der neue Wert erst mit dem nächsten Telegramm wirksam wird.

7.6 Steuerzeichen

SOH	\$01	start of header
ADR	\$F0	adresse (einstellbar)
STX	\$02	start of text
ETX	\$03	end of text
ACK	\$06	acknowledge
NAK	\$15	not acknowledge
ENQ	\$05	enquiry
BCC		Checksumme EXOR-Verknüpfung von ADR bis ETX

7.7 Sonderzeichen

ſ	=	\$3D	ist gleich / Wertzuweisung
	,	\$2C	Trennzeichen bei Listenaufruf
	•	\$2E	Trennzeichen

7.8 Stellaufforderung

Übergeordnete Steuerung = Master, AB286A = Slave

Master sendet	-	SOH	ADR	STX	<u>Text</u>	ETX	BCC
Slave sendet	-	ADR	ACK		Wenn Te	legramm in Or	dnung
	-	ADR	NAK		Bei Fehle	er	

Mit der Stellaufforderung werden Parameter in der Steuerung verändert. Die Information der Änderung ist im <u>Text</u> enthalten.

Die allgemeine Form einer Änderung lautet: **Parameter = Wert.**

Die Parameter-Nummer und der entsprechende Wertebereich sind in Kapitel Parameter beschrieben.

7.9 Sendeaufforderung

Master sendet	-	SOH	ADR	STX	<u>Text</u>	ENQ	
Slave sendet	-	SOH	ADR	STX	<u>Text</u>	ETX	BCC
	-	ADR	NAK		Bei Fehle	er	

Mit der Sendeaufforderung werden Informationen über den Zustand der Steuerung abgefragt. Diese werden in Form von Statusbytes ausgegeben. Mit der Sendeaufforderung wird nur die Parameter-Nummer mitgeteilt. Weitere Informationen zu den Statusbytes sind im Kapitel **Parameter** beschrieben.

7.10 Text

Der <u>Text</u> enthält alle Vorgaben, um Einstellungen in der Steuerung AB286A zu verändern oder Betriebszustände abzurufen. Diese Einstellungen und Betriebszustände sind im Kapitel **Parameter** ausführlich beschrieben.

7.11 Stopp-Eingang

$$0 = Lauf / 1 = Stopp$$

Mit dem Signal "Stopp" kann der Anlauf des Antriebs unterdrückt oder der laufende Motor auf schnellstem Wege zum Stillstand gebracht werden. Der Antrieb kann erst wieder nach einem Reset (Hard- oder Software) gestartet werden. Das Stopp-Signal muss mindestens 10ms anstehen.

7.12 Fehler-Ausgang

0 = betriebsbereit / 1 = Fehler

Das Signal "Fehler" wird ausgegeben, wenn eine der folgenden Funktionen nicht erfüllt ist:

- Hardware Fehler
- Software Fehler
- Externes 180° Signal fehlt
- Kommutierungsgeber Zuleitung oder Umrichter gestört
- Netzspannung zu niedrig
- Blockierung, Motor überlastet (mechanisch)

Fehlerbeschreibung Parameter 01 Bit 2: Wird nach einem Befehl "Nullpunkt anfahren" das externe Synchronisationsfenster gefunden, wird dieses Bit gesetzt. Das Fehlersignal wird ausgegeben und der Antrieb wird still gesetzt.

Das Fehler-Signal kann nur mit einem Reset (Hard- oder Software) zurückgesetzt werden.

8 Parameter

Die Parameter sind in folgende Gruppen aufgeteilt:

Gruppe 0: Status- und Steuerregister

Enthalten Informationen über den aktuellen Status der Steuerung.

Gruppe 1-4: Steuerwerte

Die Steuerwerte entsprechen nach dem Einschalten des Netzes den Systemwerten. Sie können

während dem Funktionsablauf Online verändert werden.

Gruppe 5-7: Systemwerte

Die Systemwerte dienen als Basiseinstellung, die nur selten geändert werden muss. Diese Werte

können einmalig programmiert werden und bleiben bei Netz Aus erhalten.

Achtung: Die Systemwerte können nicht während dem Nähablauf verändert werden.

Gruppe E: Betriebszustände

Hier können aktuelle Betriebszustände ausgelesen werden, wie z. B. aktueller Zählerstand oder

aktuelle Drehzahl.

Gruppe F: Betriebswerte

Hier sind Informationen über die Steuerung enthalten, wie z. B. Softwarestand und Moduladresse.

Gruppe	e <u>0</u>	
Parame	ter 00	- Kommunikations-Byte
Bit 0	= 1	Als Antwort auf eine Sendeaufforderung wird eine Liste der Parametereinstellungen gesandt (siehe Kapitel ASCII-Übertragung)
Bit 1	= 0	Reserviert (muss immer den Wert 0 haben)
Bit 2	= 1	Bereichsüberschreitung bei Stellanforderung (Parameterwert größer oder kleiner als der Einstellbereich)
Bit 3	= 1	Zugriff nicht erlaubt
Bit 4	= 1	Noise Error bei Übermittlung
Bit 5	$= \mathbf{x}$	Reserviert
Bit 6	= 1	Timeout Error bei Übermittlung
Bit 7	= 1	Block-check Error (BCC) bei Übermittlung

Bit 0 und 1 kann überschrieben und gelesen werden. Alle anderen können nur gelesen werden.

Parame	ter 01 -	Fehler-Byte
Bit 0	= 1	Hardware - Fehler
Bit 1	= 1	Software - Fehler
Bit 2	= 1	Externes 180° Signal fehlt
Bit 3	= 1	Kommutierungsgeber – Zuleitung oder Umrichter gestört
Bit 4	= 1	Netzspannung zu niedrig
Bit 5	= 1	Blockierung, Motor überlastet (mechanisch)
Bit 6	= 1	Parameter nicht vorhanden
Bit 7	= 1	Übertragung ist vorübergehend unterbrochen

Paramet	ter 02	- Status-Byte 1
Bit 0	= 1	Motor steht
Bit 1	= 1	Drehzahl erreicht
Bit 2	= 1	Position erreicht
Bit 3	= 1	Steht in Position 2
Bit 4	= 1	Steht in Position 1
Bit 5	= 1	Antrieb ist bereit (nach RESET)
Bit 6	= 1	0-Punkt ist erreicht
Bit 7	= 1	Positionsgeber synchronisiert

Parame	eter 03	- Status-Byte 2
Bit 0	= 1	Position 1E erreicht (E = einlaufend)
Bit 1	= 1	Position 1A erreicht (A = auslaufend)
Bit 2	= 1	Position 2E erreicht
Bit 3	= 1	Position 2A erreicht
Bit 4	= 1	Position 3E erreicht
Bit 5	= 1	Position 3A erreicht
Bit 6	= 1	180° Fenster erreicht
Bit 7	= 1	Reserviert

Paramete	er 04 - St	teuer-Byte 1
Bit 0	= 1	Löst einen Software-Reset aus
Bit 1	= 1	Drehrichtung CW
Bit 3/2	= 00	Geschwindigkeit 1 (Parameter 10)
	= 01	Geschwindigkeit 2 (Parameter 11)
	= 10	Geschwindigkeit 30 (Parameter 63)
	= 11	Geschwindigkeit 40 (Parameter 64)
Bit 6-4	= 000	Motor soll laufen
	=001	Unpositionierter Stopp
	= 010	Stopp in Position 1
	= 011	Stopp in Position 2
	= 100	Stopp in Position 3
	= 111	Freigabe des Pedals
Bit 7	= 1	Nullpunkt anfahren

Paramet	er 05	- Steuer-Byte 2
Bit 0	= 1	Einmaliger Impuls der Position 2
Bit 1	= 1	Drehzahl verdoppeln (Achtung: Drehzahl in 4 U/min – Schritten erweitert. Dies gilt nicht
		für die Positionierdrehzahl)
Bit 2	= 1	Zielpositionierung abschalten
Bit 3-4	= 00	Stopp bei Pedalstellung 0 → unpositioniert (Preset)
	= 01	Stopp bei Pedalstellung 0 → Position 1
	= 10	Stopp bei Pedalstellung 0 → Position 2
	= 11	Stopp bei Pedalstellung 0 → Position 3
Bit 5		Begrenzt die Drehzahl auf den im Parameter 64 (Drehzahl 40) eingestellten Wert
Bit 6		Freigabe Steuer Byte 03 (Bit 3-4 werden gesperrt)
Bit 7		Reserviert

Paramete	er 06 -	Status-Byte 3
Bit 0-1	= 00	Stopp bei Pedalstellung −1 → unpositioniert (Preset)
	= 01	Stopp bei Pedalstellung −1 → Position 1
	= 10	Stopp bei Pedalstellung −1 → Position 2
	= 11	Stopp bei Pedalstellung −1 → Position 3
Bit 2-3	= 00	Stopp bei Pedalstellung −2 → unpositioniert (Preset)
	= 01	Stopp bei Pedalstellung −2 → Position 1
	= 10	Stopp bei Pedalstellung −2 → Position 2
	= 11	Stopp bei Pedalstellung −2 → Position 3
Bit 4-5	= 00	Stopp bei Pedalstellung 0 → unpositioniert (Preset)
	= 01	Stopp bei Pedalstellung 0 → Position 1
	= 10	Stopp bei Pedalstellung 0 → Position 2
	= 11	Stopp bei Pedalstellung 0 → Position 3
Bit 6-7	= 00	Stopp bei Pedalstellung +1 → unpositioniert (Preset)
	= 01	Stopp bei Pedalstellung +1 → Position 1
	= 10	Stopp bei Pedalstellung +1 → Position 2
	= 11	Stopp bei Pedalstellung +1 → Position 3

Parame	ter 08	- Status-Byte 3
Bit 0	= 1	Pedalkontakt A geschlossen
Bit 1	= 1	Pedalkontakt B geschlossen
Bit 2	= 1	Pedalkontakt C geschlossen
Bit 3	= 1	Pedalkontakt D geschlossen
Bit 4	= 1	Pedalstellung –2
Bit 5	= 1	Pedalstellung –1
Bit 6	= 1	Pedal in Ruhestellung
Bit 7	= 1	Pedal nach vorne betätigt

Parameter 0A -	Status-Byte 3
Bit 0 Bit 1 = 1 Bit 2-7	Reserviert Zählrichtung Motor zum Handrad ist invertiert Reserviert

Paramet	er 0F	- Interrupt – Steuer-Byte	
Bit 0	= 1	Empfangen Interrupt Leitung 1 (IRQ1)	
Bit 1	= 1	Senden Interrupt Leitung 1	
Bit 2	= 1	Empfangen Interrupt Leitung 2 (IRQ2)	
Bit 3	= 1	Senden Interrupt Leitung 2	
Bit 5/4	= 00	IRQ1 Verzögerung mit Zähler 1	(Parameter 4C)
	= 01	IRQ1 Verzögerung mit Zähler 1, dann mit Timer 1	(Parameter 4D)
	= 10	IRQ1 Verzögerung mit Timer 1, dann mit Zähler 1	
	= 11	IRQ1 Verzögerung mit Timer 1	
Bit 7/6	= 00	IRQ2 Verzögerung mit Zähler 2	(Parameter 4E)
	= 01	IRQ2 Verzögerung mit Zähler 2, dann mit Timer 2	(Parameter 4F)
	= 10	IRQ2 Verzögerung mit Timer 2, dann mit Zähler 2	
	= 11	IRQ2 Verzögerung mit Timer 2	

Die Funktion der Interrupt-Steuerung ist im Kapitel **Interrupt-Steuerung** beschrieben!

Gruppe 1	Steuerwert A	
Parameter 10	- Drehzahl 01	Drehzahl 1 in [2 U/min] (bei Steuer-Byte 2 bit 1 = 1, dann [4 U/min])
Parameter 11	- Drehzahl 02	Drehzahl 2 in [2 U/min] (bei Steuer-Byte 2 bit 1 = 1, dann [4 U/min])
Parameter 12	- Positionierdrehzahl	Positionierdrehzahl in [2 U/min]
Parameter 17	- Haltekraft	Haltekraft im Stillstand (Wert von 0 bis 30 veränderbar).
		Nach RESET wird Parameter 57 als Presetwert übernommen.
Parameter 18	- Rampe 1	Beschleunigungsrampe [1/min * ms]
Parameter 19	- Rampe 2	Bremsen auf Zwischendrehzahl [1/min * ms]
Parameter 1A	- Rampe 3	Bremsen zum Positionieren [1/min * ms]
Parameter 1B	- Rampe 4	Positionier-Intensität

Gruppe 4	Steuerwert D	
Parameter 4C	- Stichzähler IRQ1	Stichverzögerung für das Senden oder Empfangen der Interrupt-Leitung 1
Parameter 4D	- Timer IRQ1	Zeitverzögerung für das Senden oder Empfangen der Interrupt-Leitung 1
Parameter 4E	- Stichzähler IRQ2	Stichverzögerung für das Senden oder Empfangen der Interrupt-Leitung 2
Parameter 4F	- Timer IRQ2	Zeitverzögerung für das Senden oder Empfangen der Interrupt-Leitung 2

Gruppe 5	Systemwert A							
Parameter 50	- Position 1E	Position 1 einlaufende Flanke						
Parameter 51	- Position 1A	Position 1 auslaufende Flanke	Position 1 auslaufende Flanke					
Parameter 52	- Position 2E	Position 2 einlaufende Flanke						
Parameter 53	- Position 2A	Position 2 auslaufende Flanke						
Parameter 54	- Position 3E	Position 3 einlaufende Flanke						
Parameter 55	- Position 3A	Position 3 auslaufende Flanke						
Parameter 56	- SynSignal	0 = Der Nullpunkt wird mit dem Geber im Mot	or erzeugt					
		1 = Fallende Flanke des externen Sensors bei p	ositiver Zählrichtung					
		ist der Nullpunkt						
		2 = Steigende Flanke des externen Sensors bei	positiver Zählrichtung					
		ist der Nullpunkt						
Parameter 57	- Haltekraft	Presetwert für Haltekraft im Stillstand (Presetwe	ert = 0; d. h. die					
		Restbremse ist nicht wirksam)						
Parameter 58	- Rampe 1	Beschleunigungsrampe [1/min * ms]						
		Wird bei Reset in Rampe 1 übertragen.	(Parameter 18)					
Parameter 59	- Rampe 2	Bremsen auf Zwischendrehzahl [1/min * ms]						
		Wird bei Reset in Rampe 2 übertragen.	(Parameter 19)					
Parameter 5A	- Rampe 3	Bremsen zum Positionieren [1/min * ms]						
		Wird bei Reset in Rampe 3 übertragen.	(Parameter 1A)					
Parameter 5C	- Rampe 4	Positionier-Intensität						
		Wird bei Reset in Rampe 4 übertragen.	(Parameter 1B)					

Gruppe 6	Steuerwert B		
Parameter 60	- Drehrichtung	Drehrichtung des Motors $CCW = 0$, $CW = 1$	
		Inhalt wird bei Reset in das Steuer-Byte übertragen	
Parameter 61	- Drehzahl 10	Drehzahl 10 in [2 U/min]	
		(bei Steuer-Byte 2 bit 1 = 1, dann [4 U/min])	
		Wird bei Reset in Drehzahl 1 übertragen.	(Parameter 10)
Parameter 62	- Drehzahl 20	Drehzahl 20 in [2 U/min]	
		(bei Steuer-Byte 2 bit 1 = 1, dann [4 U/min])	
		Wird bei Reset in Drehzahl 2 übertragen.	(Parameter 11)
Parameter 63	- Drehzahl 30	Drehzahl 30 in [2 U/min]	
		(bei Steuer-Byte 2 bit 1 = 1, dann [4 U/min])	
Parameter 64	- Drehzahl 40	Drehzahl 40 in [2 U/min]	
		(bei Steuer-Byte 2 bit 1 = 1, dann [4 U/min])	
Parameter 65	- Maximaldrehzahl	Intern wird die Drehzahl auf diesen Wert begrenzt	
Parameter 66	- Positionierdrehzahl	Positionierdrehzahl in [2 U/min]	
		Wird bei Reset in Positionierdrehzahl übertragen.	(Parameter 12)

Gruppe 7	Systemwerte C	
Parameter 70	- P-Teiler	Teilerfaktor P-Regler zur Anpassung des Laufverhaltens an die Maschine
Parameter 71	- I-Teiler	Teilerfaktor I-Regler zur Anpassung des Laufverhaltens an die Maschine
Parameter 72	- Vorhalt	Anzahl der Inkremente vor Stopp-Position

Gruppe E	Systemwerte D	
Parameter E0	- aktueller Zähler-	Damit kann der aktuelle Zählerstand des Positionsgebers ausgelesen
	stand	werden. Nach einem Reset ist eine Synchronisation erforderlich. Dazu
		kann der Befehl "Nullpunkt anfahren" benutzt werden. Ohne Synchroni-
		sation wird ein falscher Wert ausgegeben.
Parameter E1	- aktuelle Drehzahl	Damit kann die aktuelle Drehzahl ausgelesen werden. Sie wird in 2/min
		ausgegeben. Der Wert muss also mit 2 multipliziert werden.
Parameter E2	- negativer Vorhalt	Anzahl der Inkremente nach der Stopp-Position.
Parameter E3	- Kommunikations-	Timeout zwischen den Übertragungen. Bei Überschreitung der einge-
	Überwachung	stellten Zeit wird in Position 2 gestoppt und Bit 6 im Kommunikations-
		Byte gesetzt (0 = Funktion ausgeschaltet).

Gruppe F	Betriebswerte	
Parameter F0	- Eintrag 1	Hier kann ein 2-byte Eintrag wie z. B. Seriennummer vorgenommen werden.
Parameter F1	- Eintrag 2	Hier kann ein 2-byte Eintrag wie z. B. Arbeitsplatznummer vorgenommen werden.
Parameter F2	- Betriebsstunden	2-byte Betriebsstunden.
Parameter F3	- Eintrag 3	Hier kann ein 2-byte Eintrag wie z. B. Reparaturvermerk vorgenommen werden.
Parameter FA	- Leiterplatten-Nr.	Leiterplattennummer der Hauptplatine
Parameter FB	- Steuerkasten-Nr.	Steuerkastennummer
Parameter FC	- Efka-Typ	Typ-Nummer mit Entwicklungsstand
Parameter FD	- Efka-Datecode	ID-Code
Parameter FE	- Softwarestand	Programmnummer mit Änderungsindex
Parameter FF	- Adresse	Hier ist die Adresse der Steuerung AB286A abgelegt (Preset = F0)

8.1 Besonderheiten

Beim Einstellen der Drehzahlen (Parameter 10, 11, 61, 62, 63 und 64) muss immer der halbe Wert übertragen werden. So ist z. B. bei einer benötigten Drehzahl von 4000 [1 U/min] der Wert 2000 [2 U/min] zu übertragen.

8.2 Bit-Erklärungen

8.2.1 "RDY" – Bit 5 im Status-Byte 1

Liegt einer der folgenden Fehler vor, so wird das "Ready Bit" nicht gesetzt:

0 = Fehler, wie nachstehend aufgeführt / 1 = betriebsbereit

- Hardware-Fehler
- Software-Fehler
- Positionsgeber nicht angeschlossen oder defekt
- Kommutierungsgeber-Zuleitung oder Umrichter gestört
- Netzspannung zu niedrig
- Blockierung, Motor überlastet (mechanisch)

8.2.2 "NPE" - Bit 6 im Status-Byte 1

Dieses Statusbit wird gesetzt, wenn der Antrieb nach dem Befehl "Nullpunkt anfahren" innerhalb eines Fensters von +/-8 Inkrementen um den Nullpunkt steht. Mit dem Verlassen dieses Bereichs wird dieses Bit gelöscht. Der Nullpunkt wird in Verbindung mit Steuer-Byte 1 bit 7 und der Positionierdrehzahl (Parameter 12) angefahren. Um möglichst genau am Nullpunkt zu stoppen, sollte die Positionierdrehzahl möglichst klein sein.

8.2.3 "P1E, P1A, P2E, P2A, P3E, P3A" im Status-Byte 2

Die Statusbits "PxE" mit steigender Flanke und "PxA" mit fallender Flanke werden für die zugehörige Position gesetzt. Diese Bits bleiben bis zur nächsten Zustandsänderung der jeweiligen Position erhalten. Weiterhin können die Bits für das Auslösen eines Interrupts benutzt werden (Synchronisation auf Position...).

8.2.4 "PSYN" – Bit 7 im Status-Byte 1

Dieses Statusbit wird gesetzt, nachdem sich der Positionsgeber synchronisiert hat. Erst danach ist der Wert im Parameter E0, wie auch alle anderen Statusmeldungen über die Positionen, gültig.

8.2.5 "P2T" - Bit 0 im Steuer-Byte 2

Wurde dieses Bit gesetzt, wird am Ausgang der Position 2 einmalig ein Impuls ausgegeben (LOW – HIGH – LOW). Die Ausführung des Befehls erfolgt nur im Stillstand. Nach Ausgabe dieses Impulses oder bei nicht stillgesetztem Antrieb wird das Bit wieder zurückgesetzt.

8.2.6 "2N" - Bit 1 im Steuer-Byte 2

Wird dieses Bit gesetzt, werden die Drehzahlen verdoppelt. Es muss nun die vierfache Drehzahl übertragen werden. Intern wird die Drehzahl auf 10000 1/min begrenzt. Die Positionierdrehzahl wird nicht verdoppelt.

```
Steuer-Byte 2 bit 1 = 0 \Rightarrow 2-fache Drehzahl
Steuer-Byte 2 bit 1 = 1 \Rightarrow 4-fache Drehzahl
```

8.2.7 "ZSTP_" – Bit 2 im Steuer-Byte 2

Bei Setzen dieser Bits wird die Zielpositionierung abgeschaltet. Der Antrieb stoppt dann aus der Positionierdrehzahl (Parameter 68).

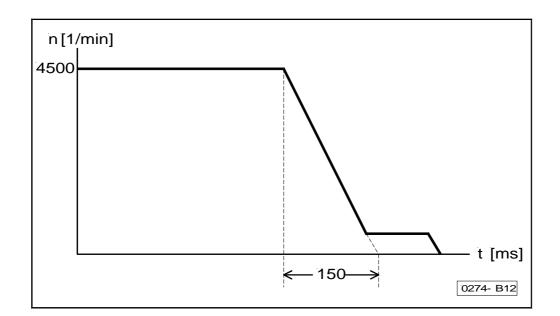
8.2.8 "PNLIM" - Bit 5 im Steuer-Byte 2

Bei dieser Einstellung wird eine limitierte Drehzahl ausgeführt, wenn die Pedalvorgabe größer ist. Ist die Pedalvorgabe kleiner, so wirkt die vom Pedal vorgegebene Drehzahl.

8.3 Funktionsbeschreibungen

8.3.1 Vorhaltewinkel für Positionierung (Systemwerte C, Gruppe 7)

Mit dem Parameter 72 kann ein Winkel eingestellt werden, mit dem der Stopp-Punkt in Abhängigkeit der eingestellten Stopp-Position vorverlegt werden kann. Dabei werden die Positionen (1E, 1A, 2E, 2A, 3E, 3A) nicht verändert. Der Presetwert für den Parameter 72 ist 0. Der Maximalwert beträgt 50 Inkremente (z. B. 50 * 1,4° = 71,1°) und kann in Einerschritten verändert werden. Die Übertragung erfolgt mit 2 Byte.


8.3.2 Nachlaufwinkel für Positionierung (Systemwerte D, Gruppe E)

Mit dem Parameter E2 kann ein Winkel eingestellt werden, mit dem der Stopp-Punkt in die eingestellte Stopp-Position hineingelegt werden kann. Dabei werden die Positionen (1E, 1A, 2E, 2A, 3E, 3A) nicht verändert. Der Presetwert für den Parameter E2 ist 6, der Maximalwert ist 25 Inkremente und kann in Einerschritten verändert werden (d. h. $25 * 1,4^{\circ} = 35^{\circ}$). Die Übertragung erfolgt mit 2 Byte.

8.3.3 Zielpositionierung

Die Zielpositionierung ermöglicht eine zeitoptimierte reproduzierbare Positionierung. Es muss darauf geachtet werden, dass der Wert der Rampe 3 (der Presetwert in Parameter 1A entspricht dem Wert in Parameter 5A) kleiner als die systembedingte maximale Bremsrampe ist (3 bis 5 [1/min * ms] kleiner als der Maximalwert). Zum Ermitteln der maximalen Bremsrampe kann der Wert der Rampe 3 auf den Maximalwert (255) eingestellt werden. Dann ergibt der Quotient aus Drehzahl und Bremszeit (in ms) den Wert für die Rampe 3.

Im Beispiel ergibt sich die Rampe aus Drehzahländerung / Zeit.

8.4 Übersicht der Parameter

Werte – Bereiche – Preset (alle Angaben sind in dezimaler und hexadezimaler Form = \$xxx angegeben)

Gruppe Nr. Beschreibung		MINIM	AL	MAXI	MAL	PRI	ESET	STEP	
			HEX	DEZ	HEX	DEZ	HEX	DEZ	
1	10	Drehzahl 1, [2 U/min]	\$023	35	\$DAC	3500	Drehz	ahl 10	1
1	11	Drehzahl 2, [2 U/min]	\$023	35	\$DAC	3500		ahl 20	1
1	12	Positionierdrehzahl	\$23	35	\$FA	250	Param	neter 68	1
1	17	Haltekraft im Stillstand	\$00	0	\$32	50	Param	neter 57	1
1	18	Rampe 1 [1/min * ms]	\$01	1	\$37	55	Param	neter 58	1
1	19	Rampe 2 [1/min * ms]	\$01	1	\$37	55	Param	neter 59	1
1	1A	Rampe 3 [1/min * ms]	\$01	1	\$37	55	Param	neter 5A	1
1	1B	Rampe 4 [1/min * ms]	\$01	1	\$37	55	Param	neter 5C	1
4	4C	Stichzähler IRQ1	\$00	0	\$FF	255	\$00	0	1
4	4D	Timer IRQ1 [5ms]	\$00	0	\$FF	255	\$00	0	1
4	4E	Stichzähler IRQ2	\$00	0	\$FF	255	\$00	0	1
4	4F	Timer IRQ2 [5ms]	\$00	0	\$FF	255	\$00	0	1
5	50	Position 1E	\$00	0	\$FF	255	\$80	128	1
5	51	Position 1A	\$00	0	\$FF	255	\$8A	138	1
5	52	Position 2E	\$00	0	\$FF	255	\$00	0	1
5	53	Position 2A	\$00	Ö	\$FF	255	\$0A	10	1 1
5	54	Position 3E	\$00	0	\$FF	255	\$C0	12	1
5	55	Position 3A	\$00	Ö	\$FF	255	\$CA	202	1 1
5	56	Synchronisations-Signal	\$00	0	\$FF	255	\$00	0	1
5	57	Haltekraft im Stillstand	\$00	0	\$32	50	\$00	0	1
5	58	Rampe 1 [1/min * ms]	\$01	1	\$37	55	\$1C	28	1
5	59	Rampe 2 [1/min * ms]	\$01	1	\$37	55	\$14	20	1
5	5A	Rampe 3 [1/min * ms]	\$01	1	\$37	55	\$1C	28	1
5	5C	Rampe 4 [1/min * ms]	\$01	1	\$37	55	\$0A	10	1
6	60	Drehrichtung	\$00	0	\$01	1	\$00	0	1
6	61	Drehzahl 10	\$023	35	\$DAC	3500	\$8CA	2250	1
6	62	Drehzahl 20	\$023	35	\$DAC	3500	\$190	400	1
6	63	Drehzahl 30	\$023	35	\$DAC	3500	\$2FE	766	1
6	64	Drehzahl 40	\$023	35	\$DAC	3500	\$4E2	1250	1
6	65	Maximaldrehzahl	\$023	35	\$DAC	3500	\$BB8	3000	1
6	66	Positionierdrehzahl	\$23	35	\$FA	250	\$5A	90	1
7	70	P-Teiler	\$01	1	\$14	20	\$04	10	1
7	71	I-Teiler	\$01	1	\$28	40	\$06	6	1
7	72	Vorhalt	\$00	0	\$32	50	\$06	6	1
E	E0	Auslesen der aktuellen Pos.	\$00	0	\$FF	255			
Ē	E1	Auslesen der Drehzahl	\$0000	0	\$0FFF	4095			_
Ē	E2	Nachlaufwinkel	\$00	0	\$32	50	\$06	6	1
Ē	E3	Kommunikations-Überwachung	\$00	Ö	\$FF	255	\$00	0	1
F	F0	Eintrag 1 (Serien-Nummer)	\$0000	0	\$FFFF	65535	\$0000	0	1
F	F0 F1	Eintrag 1 (Serien-Nummer) Eintrag 2 (Arbeitsplatz)	\$0000	0	\$FFFF	65535	\$0000	0	1
F	F2	Betriebsstunden	\$0000	0	\$FFFF	65535	\$0000	0	1
F	F3	Eintrag 3 (Reparaturvermerk)	\$0000	0	\$FFFF	65535	\$0000	0	1
F	FA	Leiterplatten-Nummer	Text 12		Text 12	00000		U	<u>'</u>
F	FB	Steuerkasten-Nummer	Text 8		Text 12				
F	FC	Efka-Typ	Text 8		Text 8				
F	FD	Efka-Datecode	Text 8		Text 8				
F	FE	Softwarestand	Text 8		Text 8				
F	FF	Moduladresse	\$F0	240	\$FF	255	\$F0	240	1
'		Moduladiosc	ψιυ	270	Ψιι	200	ψιυ	270	'

Gruppe	Nr.	Beschreibung	Bit	7	6	5	4	3	2	1	0
0	00	Kommunikations-Byte		BCC	TIM		NOI	ZUG	BER		LST
0	01	Fehler-Byte		X0F	PNV	BLCK	NETZ			SOFT	HARD
0	02	Status-Byte 1		PSYN	NPE	RDY	P01	P02	P0E	DZE	STP
0	03	Status-Byte 2			180	P3A	P3E	P2A	P2E	P1A	P1E
0	04	Steuer-Byte 1		NPA	STP3	STP2	STP1	V2	V1	DRI	RES
0	05	Steuer-Byte 2				PNLIM	PDST2	PDST1	ZSTP	2N	P2T
0	80	Status-Byte 3		PED+	PED0	PED-1	PED-2	PEDD	PEDC	PEDB	PEDA
0	0A	Status-Byte 3								CNTD	
0	0F	Interrupt-Steuer-Byte		TIQ2	ZIQ2	TIQ1	ZIQ1	SIQ2	EIQ2	SIQ1	EIQ1

BCC	=	Blockcheck-Fehler	P02	=	Steht in Position 2	ZSTP_ =	Zielstopp abschalten
TIM	=	Timeout-Fehler	POE	=	Position erreicht	2N =	Drehzahl verdoppeln
NOI	=	Noise-Fehler	DZE	=	Drehzahl erreicht	P2T =	Einmaliger Impuls der Position 2
ZUG	=	Zugriff nicht erlaubt	STP	=	Motor steht	PED+ =	Pedal nach vorne betätigt
BER	=	Bereichsüberschreitung	180	=	180° Fenster erreicht	PED0 =	Pedal in Ruhestellung
LST	=	Liste wird ausgegeben	P3A	=	Position 3A erreicht	PED-1 =	Pedalstellung –1
XOF	=	Übertragung unterbrochen	P3E	=	Position 3E erreicht	PED-2 =	Pedalstellung –2
PNV	=	Parameter nicht vorhanden	P2A	=	Position 2A erreicht	PEDD =	Pedalkontakt D geschlossen
BLCK	=	Motor überlastet, blockiert	P2E	=	Position 2E erreicht	PEDC =	Pedalkontakt C geschlossen
NETZ	=	Netzspannung zu niedrig	P1A	=	Position 1A erreicht	PEDB =	Pedalkontakt B geschlossen
SOFT	=	Software-Fehler	P1E	=	Position 1E erreicht	PEDA =	Pedalkontakt A geschlossen
HARD	=	Hardware-Fehler	NPA	=	Nullpunkt anfahren	TIQ2 =	Timer-Bit IRQ2
PSYN	=	Positionsgeber synchronisiert	STP3	=	Stopp Bit 3	ZIQ2 =	Zähler-Bit IRQ2
NPE	=	Nullpunkt erreicht	STP2	=	Stopp Bit 2	TIQ1 =	Timer-Bit IRQ1
RDY	=	Antrieb ist bereit	STP1	=	Stopp Bit 1	ZIQ! =	Zähler-Bit IRQ1
P01	=	Steht in Position 1	V2	=	Drehzahl-Bit 2	SIQ2 =	Senden IRQ2
PNLIM	=	Limitierte Drehzahl (Pedalbetr.)	V1	=	Drehzahl-Bit 1	EIQ2 =	Empfangen IRQ2
PDST1	=	Pedal-Stopp Bit 1	DRI	=	Drehrichtung	SIQ1 =	Senden IRQ1
PDST2	=	Pedal-Stopp Bit 2	RES	=	Software-Reset	EIQ1 =	Empfangen IRQ1
CNTD	=	Zählrichtung					

9 ASCII Übertragung

Die komplette Übertragung eines Protokolls erfolgt im ASCII – Code.

Beispiel: Parameter $61 = \$8CA = 2250 \ 2U/min (Drehzahl <math>10 = 4500 \ 1U/min)$

ASCII-Wert 54 dezimal \$36 hexadezimal von 6 von 1 49 dezimal **\$31** hexadezimal von (=) =61 dezimal \$3D hexadezimal von 8 56 dezimal \$38 hexadezimal = 67 dezimal von C \$43 hexadezimal = 65 dezimal \$41 hexadezimal

Die Stellaufforderung für Parameter 61 = \$8CA muss somit folgendermaßen aussehen:

SOH **ADR** STX **ETX BCC** C A) \$31 \$F0 \$3D \$38 **\$01** \$02 **\$36** \$43 \$41 \$03 \$F1

10 Listen Aufruf

Der Listen-Aufruf ermöglicht das Abfragen aller Randbedingungen zu jedem Parameter.

Gruppe	Nr.	Beschreibung	Bit	7	6	5	4	3	2	1	0
0	00	Kommunikations-Byte		BCC	TIM		NOI	ZUG	BER		LST

Ist eine Sendeaufforderung für einen Parameter gestellt, so wird der Wert des Parameters an den Master zurück gesendet.

Beispiel:

Master sendet	SOH	ADR	STX	(Parameter Nr.)	ENQ	
Slave sendet	SOH	ADR	STX	(Parameter = Wert)	ETX	BCC

Ist jedoch vor der Sendeaufforderung das Bit **LST** im Kommunikations-Byte auf 1 gesetzt, so wird nicht nur der Wert des Parameters, sondern alle Randbedingungen in Form einer Liste gesendet.

Beispiel:

Master sendet	SOH	ADR	STX (Kommunikations-Byte = xxxxxxx1) ETX	BCC
Slave sendet	ADR	ACK	Wenn Telegramm in Ordnung	
	ADR	NAK	Bei Fehler	

EFKA AB286A5400 / AB386A5420

24

Das Bit **LST** ist somit im Kommunikations-Byte auf 1 gesetzt. Anschließend stellt der Master eine Sendeaufforderung:

Master sendet SOH ADR STX (Parameter Nr.) ENQ

Slave sendet SOH ADR STX (LISTE) ETX BCC

Die Sendeaufforderung wird immer mit einer Liste beantwortet, bis der Master das Bit **LST** im Kommunikations-Byte zurücksetzt.

LISTE bedeutet in diesem Fall:

Parameter = Wert, Minimal, Maximal, Step, Preset, Zugriffsberechtigung

Die Listenwerte werden bei der Übertragung durch Kommas (ASCII \$2C) getrennt!

11 Interrupt-Steuerung

Parame	ter 0F	- Interrupt-Steuer-Byte
Bit 0	= 1	Empfangen Interrupt Leitung 1 (IRQ1)
Bit 1	= 1	Senden Interrupt Leitung 1
Bit 2	= 1	Empfangen Interrupt Leitung 2 (IRQ2)
Bit 3	= 1	Senden Interrupt Leitung 2
Bit 5/4	= 00	IRQ1 Verzögerung mit Zähler 1 (Parameter 4C)
	= 01	IRQ1 Verzögerung mit Zähler 1, dann mit Timer 1 (Parameter 4D)
	= 10	IRQ1 Verzögerung mit Timer 1, dann mit Zähler 1
	= 11	IRQ1 Verzögerung mit Timer 1
Bit 7/6	= 00	IRQ2 Verzögerung mit Zähler 2 (Parameter 4E)
	= 01	IRQ2 Verzögerung mit Zähler 2, dann mit Timer 2 (Parameter 4F)
	= 10	IRQ2 Verzögerung mit Timer 2, dann mit Zähler 2
	= 11	IRQ2 Verzögerung mit Timer 2

Wenn Bit 0 - Bit 3 von diesem Steuer-Byte gesetzt ist, wird der nächste ankommende Befehl mit der Interrupt-Anforderung verknüpft.

Beispiel 1: Interrupt Steuer-Byte =
$$00110001$$
 = Bit 0 - empfange Interrupt-Leitung 1 (IRQ1) - Verzögerung mit Timer 1 (IRQ1)

Bei einer nachfolgenden Stellaufforderung, um z. B. den Antrieb in Position 1 zu stoppen, wird dieser Befehl erst ausgeführt, wenn IRQ1 aktiv wird und die Verzögerung mit Timer 1 abgelaufen ist.

Bei einem nachfolgenden Sendebefehl für ein Status-Byte wird die Aktualisierung eines bestimmten Bits innerhalb des Status-Bytes durch Setzen von IRQ2 nach Verzögerung mit Timer 2 mitgeteilt. Ein Interrupt wird durch eine Zustandsänderung eines Bits im Status-Byte ausgelöst, wenn dieses folgendermaßen ausgewählt wurde:

Gruppe	Nr.	Beschreibung	Bit	7	6	5	4	3	2	1	0
0	02	Status-Byte 1		PSYN	NPE	RDY	P01	P02	POE	DZE	STP

Wenn der Antrieb in Position 1 steht, soll der Interrupt ausgelöst werden. Dies wird durch eine Stellaufforderung für das Status-Byte Bit 4 erreicht. Der Master sendet den Text $,,02 = 000\underline{1}0000$ " und legt damit fest, dass ein Interrupt ausgelöst werden soll, wenn Bit 4 von 0 nach 1 wechselt.

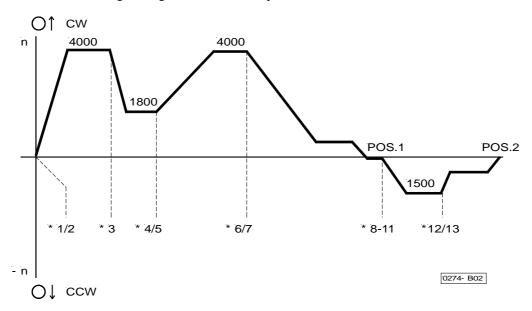
Soll ein Interrupt ausgelöst werden, wenn der Antrieb nicht mehr in der Position 1 steht, dann sendet der Master den Text "02=11101111". Der Interrupt wird dann ausgelöst, wenn Bit 4 von 1 nach 0 wechselt.

Hinweis Grundsätzlich kann immer nur ein Interrupt pro Leitung von der Mastersteuerung freigegeben werden!

Die Impulslänge eines Interrupts beträgt 100µs!

12 Beispiele für die serielle Übertragung

12.1 Netz Ein


Vor dem Netz Einschalten muss sichergestellt sein, dass die richtige Baudrate durch Brücken im Stecker gewählt wurde. Nach dem Einschalten, bzw. Restart braucht die Steuerung ca. 2 Sekunden bis sie betriebsbereit ist. Dieser Zustand wird mittels Bit 5 im Status-Byte 1 mitgeteilt.

Gruppe	Nr.	Beschreibung	Bit	7	6	5	4	3	2	1	0
0	02	Status-Byte 1		PSYN	NPE	RDY	P01	P02	POE	DZE	STP

Beispiel:	Abfrage der Betriebs	bereitschaft nac	h Netz Ein	(Sendea	ufforderung Parameter 2)		
	Master sendet Slave sendet	SOH SOH	ADR ADR	STX STX	(\$30 \$32) (\$30 \$32 \$3D \$xx \$xx))	ETX	ENQ BCC
	Aus Bit 5 kann der Ma	ster die Betriebsb	ereitschaft	erkenner	١.		

12.2 Betrieb

Beispiel: Ablauf des nachfolgend abgebildeten Drehzahlprofils.

* = Schritt

Schritt 1	Drehzahl	1 = 4000 [[1 U/min] f	estlegen	Steuerwert A	Parameter	10 = 2000	[2 U/min]
Master Slave	ADR	SOH ACK	ADR	STX	(\$31 \$30 \$3D \$3	37 \$44 \$30)	ETX	BCC

Schritt 2	Antrieb s	soll laufen	. Vorgabe	über Steuer-Byte 04	ļ		
	Kein Re	eset		Steuer-Byte 04	Bit 0	- RES	= 0
	Drehricl	htung festle	egen		Bit 1	- DRI	= 0
	Drehzal	hl 1 wähler	า		Bit 2	- V1	= 0
					Bit 3	- V2	= 0
	Motor s	oll laufen			Bit 4	- STP1	= 0
					Bit 5	- STP2	= 0
					Bit 6	- STP3	= 0
	Nullpun	kt nicht an	fahren		Bit 7	- NPA	= 0
Master	SOH	ADR	STX	(\$30 \$34 \$3D \$30	\$30)	ETX	BCC
Slave	ADR	ACK		,	•		

Antrieb läuft mit 4000 U/min

Schritt 3	Drehzahl	1 = 1800	[1 U/min] 1	festlegen	Steuerwert A	Parameter	10 = 900 [2 U/min]	
Master	SOH	ADR	STX	(\$31 \$30	\$3D \$33 \$38 \$34)	ETX	BCC	
Slave	ADR	ACK						

Antrieb läuft mit 1800 U/min

Schritt 4	Beschleu	ınigung ve	erringern	Steuerwert A	Parameter	18 = 10
	SOH	ADR	STX	(\$31 \$38 \$3D \$30 \$41)	ETX	BCC
Master	20H	ADR	217	(\$31 \$38 \$30 \$30 \$41)	EIX	BCC
Slave	ADR	ACK				

Schritt 5	Drehzahl	1 = 4000	1 U/min]	festlegen	Steuerwert A	Parameter	10 = 2000 [2 U/min]
Master	SOH	ADR	STX	(\$31 \$30	3D \$3D \$37 \$44 \$30)	ETX	BCC
Slave	ADR	ACK					

Der Antrieb beschleunigt mit flacher Flanke auf 4000 U/min

Schritt 6	Bremsra	mpe 3 ver	ringern	Steuerwert A	Parameter	1A = 10
Master	SOH	ADR	STX	(\$31 \$41 \$3D \$30 \$41)	ETX	BCC
Slave	ADR	ACK				

Schritt 7	Antrieb soll in Position 1 stoppen. Vorgabe über Steuer-Byte 04										
	Kein Re	eset		Steuer-Byte 04	Bit 0	- RES	= 0				
	Drehric	htung festle	egen	•	Bit 1	- DRI	= 0				
	Drehzal	hl 1 wähler	1		Bit 2	- V1	= 0				
					Bit 3	- V2	= 0				
	Antrieb	soll in Pos	. 1 stoppen		Bit 4	- STP1	= 0				
					Bit 5	- STP2	= 1				
					Bit 6	- STP3	= 0				
	Nullpun	kt nicht an	fahren		Bit 7	- NPA	= 0				
Master	SOH	ADR	STX	(\$30 \$34 \$3D \$32	\$30)	ETX	BCC				
Slave	ADR	ACK		•	•						

Der Antrieb läuft mit schwacher Bremse in Position 1 und stoppt.

Schritt 8	Drehzahl 1	= 1500 [1	U/min] fes	tlegen	Steuerwert A	Parameter 1	0 = 750 [2 U/min]
Master Slave	SOH ADR	ADR ACK	STX	(\$31 \$30	\$3D \$32 \$45 \$45)	ETX	BCC

Schritt 9	Beschleu	ınigung eı	höhen	Steuerwert A	Parameter	18 = 30
Master	SOH	ADR	STX	(\$31 \$38 \$3D \$31 \$45)	ETX	BCC
Slave	ADR	ACK				

Schritt 11	Antrieb soll in die andere Drehrichtung laufen. Vorgabe über Steuer-Byte 04									
	Kein Reset	Steuer-Byte 04	Bit 0	- RES	= 0					
	Drehrichtung ändern	·	Bit 1	- DRI	= 1					
	Drehzahl 1 wählen		Bit 2	- V1	= 0					
			Bit 3	- V2	= 0					
	Antrieb soll laufen		Bit 4	- STP1	= 0					
			Bit 5	- STP2	= 0					
			Bit 6	- STP3	= 0					
	Nullpunkt nicht anfahren		Bit 7	- NPA	= 0					
Master Slave	SOH ADR STX ADR ACK	(\$30 \$34 \$3D \$30) \$32)	ETX	BCC					

Der Antrieb läuft in entgegengesetzte Drehrichtung mit 1500 [1U/min]

Schritt 12	Antrieb soll in Position 2 stoppen. Vorgabe über Steuer-Byte 04								
	Kein Reset			Steuer-Byte 04	Bit 0	- RES	= 0		
	Drehric	htung ände	ern	•	Bit 1	- DRI	= 1		
	Drehzal	hl 1 wähler	1		Bit 2	- V1	= 0		
					Bit 3	- V2	= 0		
	Antrieb	soll in Pos	. 2 stoppen		Bit 4	- STP1	= 1		
			• •		Bit 5	- STP2	= 1		
					Bit 6	- STP3	= 0		
	Nullpun	kt nicht an	fahren		Bit 7	- NPA	= 0		
Master	SOH	SOH ADR STX		(\$30 \$34 \$3D \$33	3 \$32)	2) ETX	BCC		
Slave	ADR	ACK		,	•				

Schritt 13	Abfragen	ı, ob der A	ntrieb die	Position erreicht hat. Abfraç	ge über Statı	us-Byte 02
Master	SOH	ADR	STX	(\$30 \$32)	ENQ	
Slave	SOH	ADR	STX	(\$30 \$32 \$3D \$xx \$xx)	ETX	BCC

Der Status kann von der Mastersteuerung ausgewertet werden.

Das Abfragen des Status-Byte erfordert ein ständiges polling durch den Master.

Um dies zu vermeiden, muss der Slave aufgefordert werden, das Erreichen der Position mittels Interrupt zu melden.

Schritt A	Interrupt	Timer IRC	Q1	Parameter 4D a	uf 20 ms se	tzen
Master Slave	SOH ADR	ADR ACK	STX	(\$34 \$44 \$3D \$31 \$34)	ETX	BCC

Beispiel: Meldung des Erreichens der Position über Interrupt nach einer Verzögerung von 20ms

Schritt B	Interrupt Leitung 1 für Slave bereitstellen, über Interrupt-Steuer-Byte 0F								
	Kein En	npfang IRC	Q1	Interrupt-Byte 0F	Bit 0	- EIQ1	= 0		
	Sende a	auf IRQ1			Bit 1	- SIQ1	= 1		
	Kein En	npfang IRC	Q 2		Bit 2	- EIQ2	= 0		
	Kein Se	enden IRQ	2		Bit 3	- SIQ2	= 0		
	Mit Verz	zögerung I	RQ1		Bit 4	- ZIQ1	= 1		
					Bit 5	- TIQ1	= 1		
	Ohne V	erzögerun	g IRQ2		Bit 6	- ZIQ2	= 0		
		•			Bit 7	- TIQ2	= 0		
Master	SOH	ADR	STX	(\$30 \$46 \$3D \$33	\$32)	ETX	BCC		
Slave	ADR	ACK		•	•				

Schritt C	Auswahl	von Bit 2	im Status-	Byte 1 zur Auslösung des In	terrupts, we	enn Position erreicht ist.
Master Slave	SOH ADR	ADR ACK	STX	(\$30 \$32 \$3D \$30 \$34)	ETX	BCC

Schritt D	Antrieb s	oll in Pos	ition 2 stop	pen. Vorgabe über	Steuer-By	/te 04		
	Kein Re	eset		Steuer-Byte 04	Bit 0	- RES	= 0	
	Drehricl	htung ände	ern		Bit 1	- DRI	= 1	
	Drehzal	hl 1 wähler	า		Bit 2	- V1	= 0	
					Bit 3	- V2	= 0	
	Antrieb	soll in Pos	. 2 stoppen		Bit 4	- STP1	= 1	
					Bit 5	- STP2	= 1	
					Bit 6	- STP3	= 0	
	Nullpun	kt nicht an	fahren		Bit 7	- NPA	= 0	
Master	SOH	ADR	STX	(\$30 \$34 \$3D \$33	\$ \$32)	ETX	BCC	
Slave	ADR	ACK		•	,			

Wenn Bit 2 im Status-Byte 1 von 0 nach 1 wechselt, wird die Zeit IRQ1 = 20ms gestartet und anschließend der Interrupt IRQ1 vom Slave ausgelöst.

Durch Empfangen von Interrupt 1 kann der Master ohne polling das Erreichen der Position feststellen.

13 Positionseinstellungen

Gruppe	Nr.	Beschreibung	MINIMAL	MAXIMAL	PRESET	STEP
5	50	Position 1E	\$00	\$FF	\$80	1
5	51	Position 1A	\$00	\$FF	\$8A	1
5	52	Position 2E	\$00	\$FF	\$00	1
5	53	Position 2A	\$00	\$FF	\$0A	1
5	54	Position 3E	\$00	\$FF	\$C0	1
5	55	Position 3A	\$00	\$FF	\$CA	1

Gruppe	Nr.	Beschreibung	Bit	7	6	5	4	3	2	1	0
0	02	Status-Byte 1		PSYN	NPE	RDY	P01	P02	P0E	DZE	STP
0	03	Status-Byte 2			180	P3A	P3E	P2A	P2E	P1A	P1E
0	04	Steuer-Byte		NPA	STP3	STP2	STP1	V2	V1	DRI	RES

PSYN	=	Positionsgeber synchronisiert	180	=	180° Fenster erreicht	STP3	=	Stopp Bit 3
NPE	=	Nullpunkt erreicht	P3A	=	Position 3A erreicht	STP2	=	Stopp Bit 2
RDY	=	Antrieb ist bereit	P3E	=	Position 3E erreicht	STP1	=	Stopp Bit 1
P01	=	Steht in Position 1	P2A	=	Position 2A erreicht	V2	=	Drehzahl Bit 2
P02	=	Steht in Position 2	P2E	=	Position 2E erreicht	V1	=	Drehzahl Bit 1
P0E	=	Position erreicht	P1A	=	Position 1A erreicht	DRI	=	Drehrichtung
DZE	=	Drehzahl erreicht	P1E	=	Position 1E erreicht	RES	=	Software-Reset
STP	=	Motor steht	NPA	=	Nullpunkt anfahren			

Hinweis

14 Akustische Meldungen

14.1 Akustische Fehlermeldungen

Alle Fehlermeldungen bewirken das Stillsetzen des Antriebs. Das Signal ertönt bis zum Netzausschalten.

ERROR 1: Positionsgeber-Fehler
(Signal 1x kurz, 1x lang)

Positionsgeber defekt oder nicht angeschlossen

ERROR 2: Netzspannungs-Unterbrechung

(Signal 2x kurz, 1x lang)

□ ·)) -----

• Kurzzeitige Netzspannungs-Unterbrechung (bis ca. 2 sek.)

Positionsgeber nicht an der Nähmaschinenwelle montiert

Laderelais schaltet nicht

ERROR 3: Blockierüberwachung

(Signal 3x kurz, 1x lang)

____ ,)) -----

Nähmaschinenwelle bewegt sich trotz Motoransteuerung nicht

Solldrehzahl wird nicht erreicht

ERROR 4: Prozessorstörung (Illegal Opcode)

(Signal 4x kurz, 1x lang)

Mikroprozessor arbeitet nicht ordnungsgemäß

- Störeinflüsse von außen (z. B. Nähmaschinenoberteil nicht geerdet, Störungen der Netzspannung)
- Hardwarefehler auf der Rechnerleiterplatte

ERROR 5: Kommutierungsgeber-Fehler

(Signal 5x kurz, 1x lang)

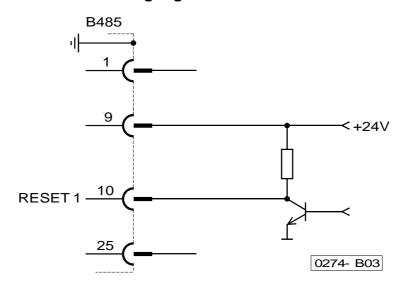
Kommutierungsgeber während des Betriebs defekt

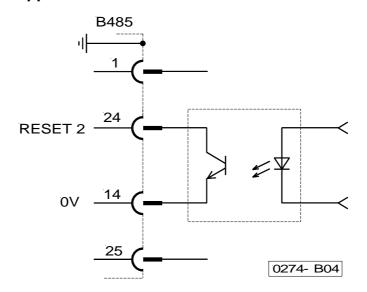
14.2 Akustische Meldung der Moduladresse

Ist beim Netzeinschalten das Pedal nicht in Nulllage, wird die Moduladresse ausgegeben. Die führende hexadezimale Ziffer "F" wird unterdrückt. Bei der Presetadresse "F0" wird lediglich ein langer Ton nach einer langen Pause ausgegeben. Bei jeder anderen Adresse bestimmt die zweite hexadezimale Ziffer die Anzahl der kurzen Töne z. B. "F3": 3 kurze Töne, Pause, langer Ton, lange Pause. Zur Unterscheidung sind die einzelnen Phasen der Fehlermeldungen wesentlich kürzer.

Zum Beispiel Moduladresse F3
(Signal 3x kurz, langer Ton, lange Pause)

Presetwert Moduladresse F0
(Signal 1x lang, lange Pause)


15 Anschlussbeispiele

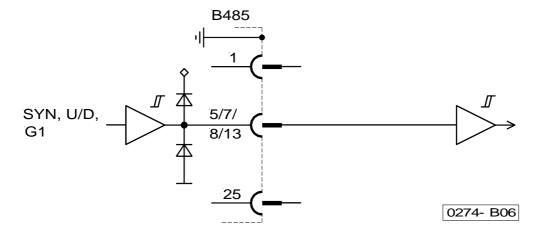

ACHTUNG!

Es sollten grundsätzlich nur geschirmte Leitungen verwendet werden.

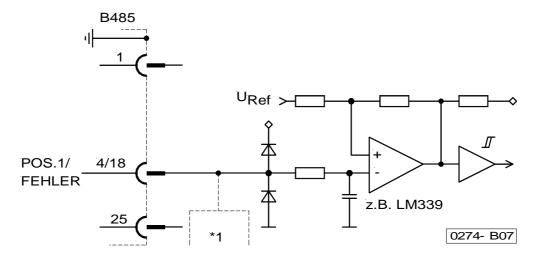
15.1 Reset mit externer 24V-Versorgung



15.2 Reset mit Optokoppler

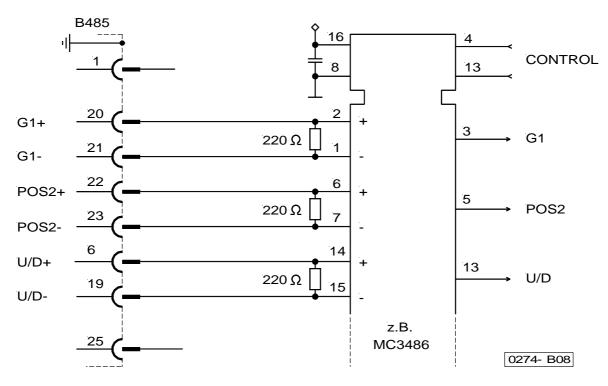


15.3 Busfähige Signale IRQ1 und IRQ2

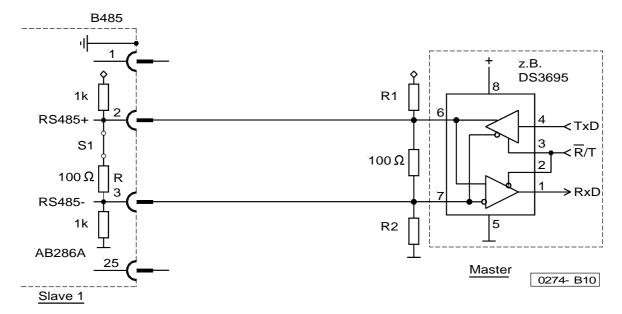

(Siehe auch Software-Vereinbarungen in Kapitel "Parameter"!)

15.4 Signale U/D, SYN und G1

15.5 Busfähige Signale POS1 und FEHLER


⁼ Hier können weitere Module angeschlossen werden!

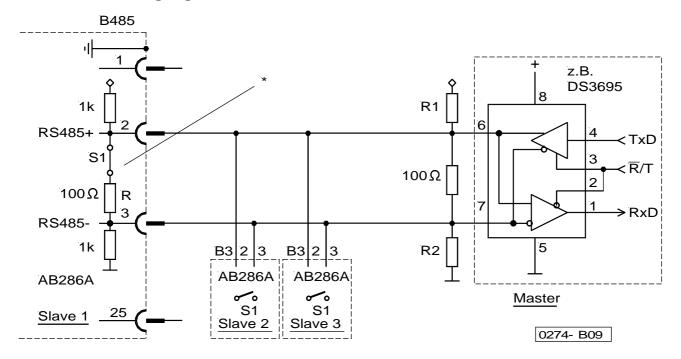
15.6 Differentielle Signalverbindung


G1 = Generator 512 Impulse / Umdrehung

POS2 = Position 2

U/D = Rechts- / Linkslauf

15.7 Datenübertragung RS485 mit einem Antrieb



ACHTUNG!

Die Widerstände R1 und R2 müssen entsprechend der Anzahl der BUS-Teilnehmer vom Betreiber dimensionieret werden; z. B. bei Einsatz von 1 Master und 1 Slave ist R1 bzw. R2 auf 560Ω festzulegen!

15.8 Datenübertragung RS485 mit mehreren Antrieben

= Brücke S1 für Abschlusswiderstand

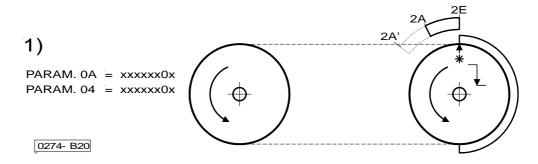
ACHTUNG!

Die Widerstände R1 und R2 müssen entsprechend der Anzahl der BUS-Teilnehmer vom Betreiber dimensionieret werden; z. B. bei Einsatz von 1 Master und 1 Slave ist R1 bzw. R2 auf 560Ω festzulegen!

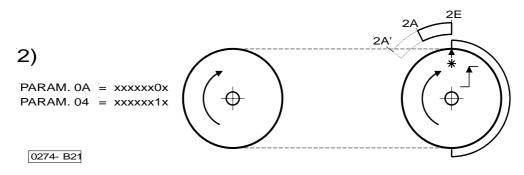
An "Slave 2, 3" ist jeweils der Abschlusswiderstand "**R**" in der Steuerung AB286A mittels der eingebauten Brücke "**S1**" zu deaktivieren! Bei Anschluss von mehreren Antrieben sind unterschiedliche Adressen festzulegen (max. 16 Adressen).

15.9 Abschlusswiderstand aktivieren / deaktivieren

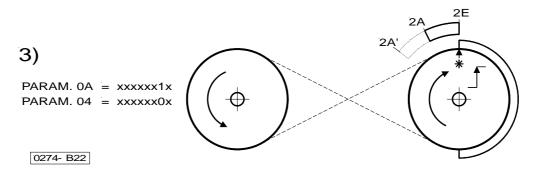
- Netz abtrennen
- Abdeckung der Rückseite (Steckerseite) an der Steuerung nach Lösen der 4 Schrauben abnehmen
- Brücke S1 auf kleiner Leiterplatte schließen = Abschlusswiderstand ist wirksam (siehe Abbildung im Kapitel "Steckverbindungen")
- Brücke S1 auf kleiner Leiterplatte öffnen = Abschlusswiderstand ist nicht wirksam
- Abdeckung wieder aufsetzen und festschrauben

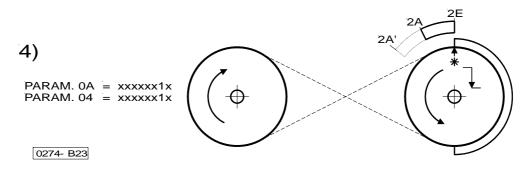

ACHTUNG!

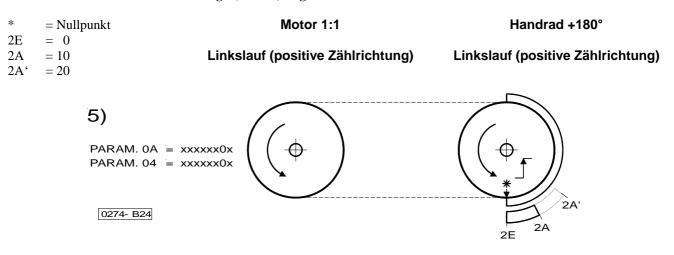
Vor Öffnen der Abdeckung ist unbedingt die Netzspannung auszuschalten und der Netzstecker abzuziehen!

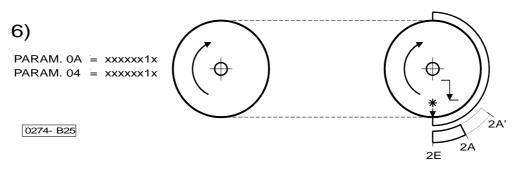

15.10 Synchronisationssignal für Positionierung

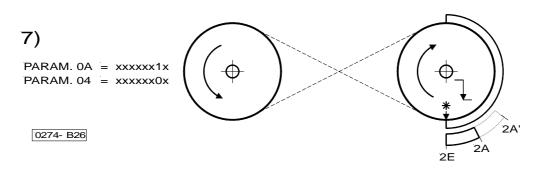
Parameter 56 = 01 Sensor aktiv low (Flanke) Signal an B18/7

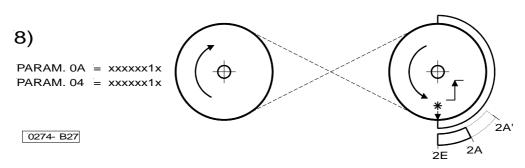

* = Nullpunkt Motor 1:1 Handrad +180° 2E = 02A = 10 Linkslauf (positive Zählrichtung) Linkslauf (positive Zählrichtung)

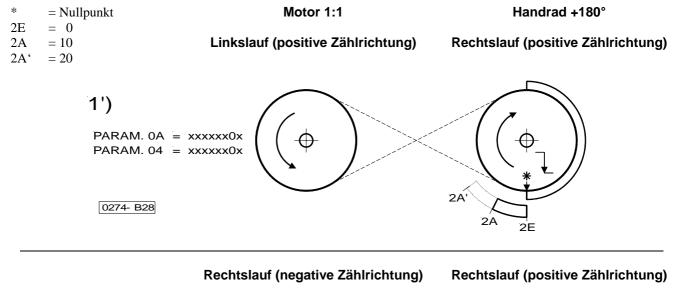

Rechtslauf (negative Zählrichtung) Rechtslauf (negative Zählrichtung)

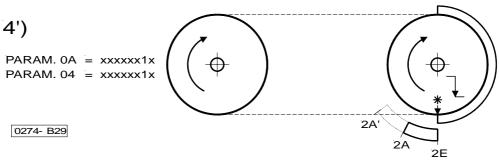

Linkslauf (positive Zählrichtung) Rechtslauf (negative Zählrichtung)


Rechtslauf (negative Zählrichtung) Linkslauf (positive Zählrichtung)


Parameter 56 = 02 Sensor aktiv high (Flanke) Signal an B18/7


Rechtslauf (negative Zählrichtung) Rechtslauf (negative Zählrichtung)


Linkslauf (positive Zählrichtung) Rechtslauf (negative Zählrichtung)



Rechtslauf (negative Zählrichtung) Linkslauf (positive Zählrichtung)

Parameter 56 = 01 Sensor aktiv low (Flanke) Signal an B18/7

Mit dem Parameter 56 kann die Art des Synchronisationssignals für die Positionsgenerierung bestimmt werden:

Parameter 56 = 0 Der Nullpunkt wird mit dem Geber im Motor erzeugt.

Parameter 56 = 1 Die fallende Flanke des externen Sensors bei positiver Zählrichtung ist der Nullpunkt.

Parameter 56 = 2 Die steigende Flanke des externen Sensors bei positiver Zählrichtung ist der Nullpunkt.

Die nur am Motor messbare Drehrichtung wird als Zählrichtung für die Motorwelle und die Handradwelle benutzt. Ist das Steuerbit CNTD = 0 (Parameter 0A Bit 1), so ist die Zählrichtung des Motors gleich der Zählrichtung am Handrad. Ist das Steuerbit CNTD = 1, so ist die Zählrichtung des Motors ungleich der Zählrichtung am Handrad.

In den vorliegenden Beispielen wird vorausgesetzt, dass die Signalscheibe des Sensors am Handrad befestigt ist.

Wird die fallende Flanke (Beispiel 1 und 2) als Synchronsignal ausgewählt, bleibt der Nullpunkt bei beiden Drehrichtungen am gleichen Punkt. Soll nun bei umgekehrter Anbauweise "Motor und Handrad drehen in unterschiedliche Richtungen (Beispiel 3 und 4)" der Nullpunkt am Handrad die gleiche Stelle aufweisen, kann dies mit dem Steuerbit CNTD eingestellt werden.

Für Ihre Notizen:

Für Ihre Notizen:

FRANKL & KIRCHNER GMBH & CO KG

SCHEFFELSTRASSE 73 – 68723 SCHWETZINGEN TEL.: +49 (0) 6202 2020 – FAX: +49 (0) 6202 202115 E-Mail: info@efka.net – http://www.efka.net

3715 NORTHCREST ROAD – SUITE 10 – ATLANTA – GEORGIA 30340 PHONE: +1-770-457 7006 – FAX: +1-770-458 3899 – email: efkaus@bellsouth.net

ELECTRONIC MOTORS SINGAPORE PTE. LTD.

67, AYER RAJAH CRESCENT 05-03 - SINGAPORE 139950 PHONE: +65-67772459 - FAX: +65-67771048 - email: efkaems@efka.net