Efkhdc15xx

CONTROL

dc1500 dc1550

MC221A5800
MC321A5810

INSTRUCTION MANUAL

WITH LIST OF PARAMETERS
No. 402312 English

Efka

Efka
EFKA OF AMERICA INC.
1 Use in Accordance with Regulations 7
2 Scope of Supply 8
2.1 Special Accessories 8
3 Motor Specifications 9
4 Operating Elements and Socket Connectors 10
4.1 Position of Operating Elements and Displays 10
4.2 Position of the Socket Connectors 10
4.3 Connection Diagram 11
4.3.1 Socket ST2 11
4.3.2 Socket ST3 13
4.3.3 Socket B18 13
5 Connection Scheme for Stepping Motor Control SM210A 14
5.1 Connection Scheme for One Stepping Motor Control 14
5.2 Connection Scheme for Several Stepping Motor Controls 15
6 Control Operation without Control Panel 16
6.1 Access Authorization upon Command Input 16
6.2 Programming the Code Number 17
6.3 Parameter Selection 18
0.3.1 Direct Parameter Selection 18
6.3.2 Changing Parameter Values 20
6.3.3 Parameter Selection Using Keys +/- 21
0.3.4 Immediate Storage of All Changed Data 21
0.4 Program Identification on the Control 22
7 Control Operation with Control Panel 23
7.1 Operation of the V810 Control Panel 23
7.1.1 Code Number Input on the V810 Control Panel 23
7.1.2 Parameter Input at the Operator Level on the V810 Control Panel 23
7.1.3 Parameter Input at the Technician/Supplier Level on the V810 ControlPanel 24
7.2 V820/V850 Control Panel Operation 24
7.2.1 Code Number Input on the V820/V850 Control Panel 24
7.2.2 Parameter Input at the Operator Level on the V820/V850 Control Panel 25
7.2.3 Parameter Input at the Technician/Supplier Level on the V820/N850 Control Panel 25
7.3 Program Identification 26
7.3.1 Further Functions of the V810/V820/V850 Control Panels 26
8 Putting into Service 27
9 Programming Control Functions using Compiler C200 28
9.1 C200 Compiler Installation 29
9.2 Editor 29
9.3 Compiler 30
9.4 Loader 31
9.5 Programming Example 32
10 Setting the Basic Functions 33
10.1 Direction of Motor Rotation 33
10.2 Maximum Speed Compatible with the Machine 33
10.3 Starting Characteristics 33
10.4 Braking Characteristics 34
10.5 Braking Power at Standstill 34
10.6 Holding Power of Output VR 34
10.7 Holding Power of Output FL 35
11 Setting the Input Switching Thresholds 36
12 Programming 2 Position Signals per Motor Rotation 37
12.1 Setting the Reference Position (Parameter $270=0$) 37
12.2 Setting the Positions on the Control (Parameter $270=0$) 37
12.3 Setting the Positions on the V810 Control Panel (Parameter 270 = 0) 38
12.4 Setting the Positions on the V820/V850 Control Panel (Parameter $270=0$) 38
12.5 Signal Output Position 1 39
12.6 Signal Output Position 2 39
12.7 Signal Output 512 Impulses per Rotation 39
12.8 Use of a Hall Sensor Module HSM001 40
12.9 Transmission Ratio 40
13 Service Functions 41
13.1 Signal Test 41
13.2 Signal Test Using the V810/V820/V850 41
13.3 Display of the Signal and Stop Positions 42
14 List of Parameters 43
14.1 Technician Level 43
14.2 Supplier Level 44
15 Error Displays 46
16 Operating Elements of the V810 Control Panel 47
17 Operating Elements of the V820/V850 Control Panel 48

1 Use in Accordance with Regulations

The drive is not an independently operating machine, but is designed to be incorporated into other machinery. It must not be put into service until the machinery into which it is to be incorporated has been declared in conformity with the provisions of the EC Directive (Appendix II, paragraph B of the Directive 89/392/EEC and supplement 91/368/EEC).

The drive has been developed and manufactured in accordance with the relevant EC standards:
EN 60204-3-1:1990 Electrical equipment of industrial machines:
Particular requirements for industrial sewing machines, sewing units and sewing systems.

Operate the drive only in dry areas.

CAUTION

When selecting the installation site and the layout of the connecting cable, the Safety Instructions must be followed with no exceptions.
Particular attention should be paid to maintaining the proper distance from moving parts!

2 Scope of Supply

1 Direct current motor for MC221A
1 Direct current motor for MC321A
1 Electronic control/frequency converter/power supply unit
1 Set of accessories consisting of:

DC1500
DC1550
MC221A5800 or MC321A5810
37-pin SubminD plug Potential equalization cord

Note

If there is no metallical contact between drive (motor) and machine head, the potential equalization cord supplied with the unit is to be wired from the machine head to the terminal provided on the control box!

2.1 Special Accessories

Control panel Variocontrol V810

- part no. 5970153

Control panel Variocontrol V820

- part no. 5970154

Control panel Variocontrol V850

- part no. 5970158

Reflection light barrier module LSM002

- part no. 6100031

Hall sensor module HSM001

- part no. 6100032

EFKANET interface IF232-3, complete

- part no. 7900071

Adapter cord for the connection of light barrier module and Hall sensor module - part no. 1113229
HSM001 or EFKANET
Compiler C200 for the MC221A.../MC321A... controls - part no. 1113262
Adapter cord for the connection of sockets B18 each on the SM210 stepping - part no. 1113172
motor control and on the above control (see chapter "Connection Scheme of SM210A
Stepping Motor Control")
Extension cable approx. 1000 mm long for commutation transmitter DC15.. - part no. 1113151
Extension cable approx. 1000 mm long for DC15.. line - part no. 1113150
9 -contact SubminD male connector

- part no. 0504135

9-contact SubminD female connector

- part no. 0504136

Half-shell housing for 9 -contact SubminD

- part no. 0101523

37-pin SubminD male connector, complete

- part no. 1112900

Single pins for 37-pin SubminD with strand of 5 cm length - part no. 1112899

3 Motor Specifications

Bemessungsdaten	Rating	DC1500	DC1550
Leistung	Power	400 W	600 W
Drehzahl	Speed	$6000 \mathrm{~min}^{-1} / \mathrm{RPM}$	$3000 \mathrm{~min}^{-1} / \mathrm{RPM}$
Drehmoment	Torque	0.64 Nm	1.9 Nm

Grenzwerte	Limit Values	DC1500	DC1550
Drehzahl	Speed	$9000 \mathrm{~min}^{-1} / \mathrm{RPM}$	$5000 \mathrm{~min}^{-1} / \mathrm{RPM}$
Drehmoment (Beschleunigung)	Torque (acceleration)	3.2 Nm	8 Nm
Leistung (kurzzeitig)	Power (momentarily)	1000 W	1800 W

Technische Daten	Technical Data	DC1500	DC1550
Rotorträgheitsmoment (Jrot)	Moment of inertia (Jrot)	$0.5 \mathrm{~kg} \mathrm{~cm}^{2}$	$0.9 \mathrm{~kg} \mathrm{~cm}^{2}$
Schutzart	Protection class	IP40	IP40
Isolationsklasse	Insulation class	B	B
Gewicht	Weight	2.125 kg	3.125 kg
Flanschmaß	Flange dimensions	$80 \times 75 \mathrm{~mm}$	$80 \times 75 \mathrm{~mm}$
Wellenende (zylindrisch)	Shaft end (cylindrical)	$\varnothing 14 \mathrm{K6}$	$\varnothing 14 \mathrm{K6}$
mit Keilnut	with keyway		
Inkrementalgeber integriert	Incremental encoder, integrated	512 pulses/revolution	512 PPR

4 Operating Elements and Socket Connectors

4.1 Position of Operating Elements and Displays

S1 Key P
Call or exit programming mode
S2 Key E
Enter key for modifications in the programming mode
S3 Key +
Increase of the value indicated in the programming mode
S4 Key -
Decrease of the value indicated in the programming mode
S5 Key >>
Shift key in the programming mode
Display 4 digits

4.2 Position of the Socket Connectors

B2 Socket for commutation transmitter
B18 Socket for - Light barrier module LSM002
(Adapter cord 1113229 in case of multiple assignment)
B41 Socket for motor power supply
B776 Socket for V810/V820/V850 control panel
ST1 Socket for sensors
ST2 Socket for actuators and sensors
ST3 Socket for sensors

4.3 Connection Diagram

4.3.1 Socket ST2

Inputs switched to 0 V

ATTENTION!

When connecting the outputs, ensure that a total power of 96VA constant load will not be exceeded!

in1	- Input 1
in2	- Input 2
in3	- Input 3
in4	- Input 4
in5	- Input 5
in6	- Input 6
in7	- Input 7
in8	- Input 8
in9	- Input 9

Inputs switched to $\mathbf{+ 2 4 V}$

BI1164

ATTENTION!
When connecting the outputs, ensure that a total power of 96VA constant load will not be exceeded!

Note

It is possible to set the input switching thresholds. See chapter 11!

1) Nominal voltage 24 V , no-load voltage max. 30 V momentarily after power on
2) Transistor output with open collector max. $40 \mathrm{~V}, 10 \mathrm{~mA}$
3) Nominal voltage $15 \mathrm{~V}, I_{\text {max }}=30 \mathrm{~mA}$
4) Nominal voltage $5 \mathrm{~V}, \mathrm{I}_{\max }=20 \mathrm{~mA}$
*) Front view of the socket (component side) and/or rear view of the plug (soldering side)

4.3.2 Socket ST3

-B11150

A -Input
Open / OV = active
B -Input
Open / OV = active
C -Input
Open / OV = active
D -Input
Open / OV = active

4.3.3 Socket B18

Connection of a HSM001 Hall sensor module

Connection of a LSM002 light barrier module

$B 11174$

> POS2 OUT

- Output for position 2

POS IN - Input for signal from Hall sensor module
G1/G2 OUT - Output of generator impulses
TXD/RXD - Serial transmission lines
LSM IN - Possibility of connecting a light barrier module to socket B18/8

There is a supply voltage of +5 V for external devices on the B18/4 socket. After opening the cover, this voltage can be changed to +15 V by replugging a multipole connector J 1 on the printed circuit board.
$+5 \mathrm{~V}=$ Connect lefthand pins 1 and 2 with jumper (factory setting)
$+15 \mathrm{~V}=$ Connect righthand pins 3 and 4 with jumper

ATTENTION!

Before opening the cover, turn power off!
2) \quad Nominal voltage $+15 \mathrm{~V}, 100 \mathrm{~mA}$ (repluggable to $+5 \mathrm{~V}, 100 \mathrm{~mA}$)
3) Transistor output with open collector max. $40 \mathrm{~V}, 10 \mathrm{~mA}$
*) Front view of the socket (component side) and/or rear view of the plug (soldering side)

5 Connection Scheme for Stepping Motor Control SM210A

The MC221A / MC321A control can be expanded by up to 5 stepping motor controls.

5.1 Connection Scheme for One Stepping Motor Control

The MC221A./MC321A. d.c. controls (B18) and the SM210A stepping motor control (B18) are connected by means of adapter cord no. 1113172.

By connecting a stepping motor control it is possible to expand the system by 5 outputs and 8 inputs!

5.2 Connection Scheme for Several Stepping Motor Controls

If several stepping motor controls are connected, a jumper must be inserted between pin 2 and 3 on socket B19 of the last stepping motor control.

The stepping motor controls must be set to the "slave" mode using parameter F-290 = 10, and addressed using parameter F-272 $=2 \ldots 3 \ldots .4 \ldots .5 \ldots .6$, e.g. first SM210A $/$ F-272 $=2$, second SM210A $/$ F-272 $=3$ etc.

6 Control Operation without Control Panel

6.1 Access Authorization upon Command Input

In order to prevent unintentional changes of preset functions the command input is distributed at various levels.

The following persons have access:

- the supplier to the highest and all subordinate levels using a code number
- the technician to the next lower and all subordinate levels using a code number
- the operator to the lowest level without using a code number

6.2 Programming the Code Number

1. Press key \mathbf{P} and turn power on

$E+\gg-$
2. Press key + or - to select the $1^{\text {st }}$ digit

Technician level \rightarrow Code no. 1907
Supplier level $\boldsymbol{\rightarrow}$ Code no. 3112

6. Press key >> (3 $3^{\text {rd }}$ digit blinks)

7. Press key + or - to select the $3^{\text {rd }}$ digit

9. Press key + or - to select the $4^{\text {th }}$ digit
10.Press key \mathbf{E}. The parameter number is displayed, which is indicated by points between the digits.

$E+\gg-$

KL2542-04

6.3 Parameter Selection

6.3.1 Direct Parameter Selection

1. After code number input at the programming level

$E+\gg-$
2. Press key >> ($1^{\text {st }}$ digit blinks)

3. Press key + or - to select the $1^{\text {st }}$ digit

4. Press key >> (2 $2^{\text {nd }}$ digit blinks)

5. Press key + or - to select the $2^{\text {nd }}$ digit

6. Press key >> ($3^{\text {rd }}$ digit blinks)

7. Press key + or - to select the $3^{\text {rd }}$ digit
8. Press key E. The parameter value is displayed. There are no points between the digits.

6.3.2 Changing Parameter Values

1. Display after parameter value selection

$E+\gg-$
2. Change the parameter value by pressing key + or -

E + >> -
KL2542-08

Press key \mathbf{P}. Exit programming.
The changed parameter values will be saved when you start sewing again!

$E+\gg-$
KL2542-09

Option 2

Press key \mathbf{P}. The same parameter number is displayed.

$E+\gg-$

E + >> -

6.3.3 Parameter Selection Using Keys +/-

1. After code number input at the programming level
2. Select the next parameter by pressing key +

$E+\gg-$
KL2542-11
3. Select the previous parameter by pressing key -

$E+\gg-$
4. After pressing key \mathbf{E}, the parameter value is displayed

E + >> -
KL2542-12

All input parameters must be saved by changing parameter 401.

6.3.4 Immediate Storage of All Changed Data

Functions		Parameter
Storage of all changed data	(EEP)	401

- Input code number 3112 after power On
- Input parameter 401
- Set display from 0 to1
- All data have been saved!

6.4 Program Identification on the Control

Function without control panel	Parameter
Program number, modification index and identification number display	$\mathbf{1 7 9}$

After having selected parameter 179 (example), the following information is displayed in succession:

1. Select parameter 179.
2. Press key E.

Display of letter symbol Sr5
3. Press key >>.
4. Press key E.
5. Press key E.

Display of program number (5800)
Display of modification index (A)
Display of identification number digit 1 and 2
6. Press key E.

Display of identification number digit 3 and 4
7. Press key E.

Display of identification number digit 5 and 6
8. Press key E.

Display of identification number digit 7 and 8

Exit the routine after pressing key \mathbf{P} once. The next parameter number is displayed. Exit programming after pressing key \mathbf{P} twice.

7 Control Operation with Control Panel

7.1 Operation of the V810 Control Panel

7.1.1 Code Number Input on the V810 Control Panel

Technician Level Code Number => 1907 and Supplier Level Code Number => 3112

Example: Technician level CODE number selection on the V810 control panel TURN POWER OFF.

P	+	TURN POWER ON. First digit blinks.	\rightarrow	C-0000
+	-	Press key + or - to select the first digit.	\rightarrow	C-1000
"		Press key >>. Second digit blinks.	\rightarrow	C-1000
+	-	Press key + or - to select the second digit.	\rightarrow	C-1900
"	"	Press key >> twice. Fourth digit blinks.	\rightarrow	C-1900
+	-	Press key + or - to select the fourth digit.	\rightarrow	C-1907
E		If the CODE number is correct, the first PARAMETER number at the selected level is displayed.	\rightarrow	F - 100

7.1.2 Parameter Input at the Operator Level on the V810 Control Panel

Example: CODE number has not been input.

```
TURN POWER ON.
```


First parameter at the operator level is displayed.

Second parameter at the operator level is displayed. The next or previous parameter can be called up by pressing the + - keys.

Parameter value is displayed.
Change parameter value by pressing the +/- keys.

Parameter value is entered. Display advances to the next parameter.

$$
F-\quad 002
$$

Press key + several times until the

E	Parameter value is displayed.	\rightarrow	0
$+$	New parameter value is displayed.	\rightarrow	1
E	Next parameter is displayed.	\rightarrow	F- 013
\mathbf{P}	Exit programming.	\rightarrow	MC 221 A

Note! The parameter number can also be selected directly, like the code number!

7.1.3 Parameter Input at the Technician/Supplier Level on the V810 Control Panel

Example: After CODE number input at the technician level.

7.2 V820/V850 Control Panel Operation

7.2.1 Code Number Input on the V820/V850 Control Panel

Technician Level Code Number => 1907 and Supplier Level Code Number => 3112

Example: Technician level CODE number selection on the V820 control panel
TURN POWER OFF.

\mathbf{P}	$\mathbf{+}$	TURN POWER ON	\mathbf{C}-0000	
$\mathbf{1}$	$\mathbf{9}$	$\mathbf{0}$	$\mathbf{7}$	Input CODE number.

\mathbf{E}	If CODE number is incorrect, repeat input.	$\boldsymbol{\rightarrow}$	C-0000	InFo F1
\mathbf{E}	If CODE number is correct, the first PARAMETER number at the selected level is displayed.	\rightarrow	F-100	

7.2.2 Parameter Input at the Operator Level on the V820/V850 Control Panel

Example: CODE number has not been input.

7.2.3 Parameter Input at the Technician/Supplier Level on the V820/V850 Control Panel

Example: After CODE number input at the technician level.
After CODE number input, the first PARAMETER number is displayed. \square
The most significant digit of the PARAMETER number blinks.

or
or

Press key \mathbf{P} twice.
Exit programming.

A new PARAMETER number can be selected.

Input desired PARAMETER
 number.

If PARAMETER number is incorrect,
E repeat input.

If PARAMETER number is correct

Change the parameter value.
Parameter value is entered.
Display advances to the next parameter.

r
$\rightarrow \quad 4000$ MC221A

7.3 Program Identification

Function with control panel	Parameter
Program number, modification index and identification number display	$\mathbf{1 7 9}$

Display example parameter 179 on the V810 control panel:

- Select parameter 179.
- Press key E $\quad \rightarrow \quad \mathrm{Sr} 5\left[{ }^{\circ}\right]$ is displayed
- Press key $\gg \quad \rightarrow \quad$ e. g. 5800A is displayed
- Press key E $\quad \rightarrow \quad$ e.g. 010823 is displayed
(Program number with index)
$\rightarrow \quad$ e. g. 15 is displayed (1st part of date)
- Press key E
- Press key P twice $\quad \rightarrow \quad$ MC221A is displayed \quad (Procedure completed)
(2nd part of date)
Display example parameter 179 on the V820/V850 control panel:
- Select parameter 179.
- Press key E
$\rightarrow \quad \mathrm{F}-179 \mathrm{Sr} 5\left[{ }^{\circ}\right]$ is displayed
- Press key >>
$\rightarrow \quad$ e.g. PrG 5800A is displayed
$\rightarrow \quad$ e.g. dAt 01082315 is displayed (Date)
- Press key E
$\rightarrow \quad$ e. g. 132650210015 is displayed
(Serial number)
- Press key E
$\rightarrow \quad$ e.g. Skn 01047543 is displayed
(Control box number)
- Press key P twice $\quad \rightarrow \quad$ MC221A is displayed (Procedure completed)

7.3.1 Further Functions of the V810/V820/V850 Control Panels

- Press key >>
- Press key +/- briefly
- Keep key +/- pressed down
- Press key >> once more
- Press key + /- as above.
- Press key E
\rightarrow The most significant digit blinks.
\rightarrow The blinking digit changes by ± 1.
\rightarrow The blinking digit keeps changing its value, as long as the key is pressed down.
\rightarrow The next digit blinks.
\rightarrow The setting is completed.

With the code number and parameter number there is no carry over when changing from 0 to 9 or vice versa. Parameter values are, however, carried over. Therefore, you can use the $+/-$ keys to change the value between the minimum and maximum value.
If the value change is significant, it is better to use key \gg. If the value change is insignificant, use key $+/-$.
For setting the minimum or maximum value, select the most significant digit by means of key \gg. Then keep pressing the - key for the minimum or the + key for the maximum value.
The above description is applicable to the V810, V820 and V850 control panels. Direct input of values is possible with the V820/V850 using keys 0...9.

8 Putting into Service

Before putting the control into service, the following must be ensured, checked and/or adjusted:

- The correct installation of the drive, position transmitter and accompanying devices, if necessary
- If necessary, the correct adjustment of the direction of motor rotation using parameter 161
- If necessary, the setting of the 0 reference position using parameter 170
- If necessary, the setting of the positions using parameter 171
- The setting of the transmission ratio between motor shaft and machine shaft using parameter 272
- The correct maximum speed compatible with the sewing machine using parameter 111
- The setting of the remaining relevant parameters
- Save the set values using parameter 401

The programmable MC221A or MC321A control is a compact plug-and-play unit including frequency converter and power supply. When putting it into service, note the following:

- Power supply = 230V
- The frequency converter is adapted to the respective motor: MC221A/DC1500 or MC321A/DC1550
- Programming the maximum speed of the systems
- Programming the motor braking power at standstill
- Programming the direction of motor rotation
- Programming the accelerating curve
- Programming the braking curve
- Testing the connected sensors / actuators
- Parameter F-111. (see chapter 10)
- Parameter F-153 (see chapter 10)
- Parameter F-161 (see chapter 10)
- Parameter F-220 (see chapter 10)
- Parameter F-208 (see chapter 10)
- Parameter F-173 (see chapter 13)
- Operation of the control and motor must be generated by download into the control using the "Compiler C200" software.

All parameters can be changed using the connected control panel or, directly by the program created by C200.

9 Programming Control Functions using Compiler C200

The Efka Compiler C200 is a software tool for programming user-defined functions on the MC221A or MC321A control. For further programming information see "Compiler C200" user manual.

The Compiler provides the following basic functions:

- predetermined functions which are integrated by means of a system file
- 24 kB for user programs and data
- error management routine with automatic error marking
- loader for program storing in the control

The MC221A or MC321A control (socket B18) and the computer (socket COMx) are connected by means of interface IF232-3.

Set of special C200 Compiler accessories consisting of:
order no. 1113262

- C200 Compiler Software CD-ROM
- C200 Compiler User Manual
- EFKANET IF232-3 Interface

CD - ROM contents:

- Compiler C200
- Loader
- Editor (UltraEdit ®-32, Copyright ©1994-2001 IDM Computer Solutions, Inc)

Shareware version

- Compiler manual in PDF format
- Sample programs

9.1 C200 Compiler Installation

Provided that the AUTORUN function in the target computer is On, the installation assistent starts automatically upon loading the CD. Otherwise start SETUP.EXE on the CD.
At the beginning of the installation you will be asked if you want to install the compiler only, or the editor as well. The compiler is installed in a first step. If not otherwise selected, the program is installed under C:IEfkaCompl. Then the editor is installed. You can use the editor as shareware for 40 days. For further use, a fee is to be paid to the manufacturer in order to receive an authorization code.
You can start or integrate the compiler using other editors, too. However, we recommend using the editor supplied with the unit, since all three components will be set up as integrated development environment "IDE". The same user interface serves for programming, compiling and downloading. Moreover, the "syntax highlighting" and "upper casing" functions will be executed when creating the programs, which helps to detect syntax errors immediately.

9.2 Editor

9.3 Compiler

When starting the compiler, the source text is translated into the machine code, and a download file is generated, which will be stored in the same directory as the source code file. The source code file has the extension "PRC", the download file "PRG".
The compilation result is displayed in the result window.

EFKAC - Version: 01.30 / Build: Jan 282003
(c) 2000 Frankl \& Kirchner GmbH \& Co KG

Kompiliere: "C:\EfkaComp\Example\A04.prc".
C:\EfkaComp \Example\A04.prc:19:8 Fehler (0501) Unknown descriptor : "STATUSX"
C:\EfkaComp \backslash Example\404.prc:19:19 Fehler (0500) "END_IF" expected
C:\EfkaComp\Example\A04.prc:20:7 Fehler (0500) "END_SELECT" expected !
RESULT WITH ERROR
C: \EfkaComp\Example\A04.prc:21:5 Fehler (0500) ";" expected !
C:\EfkaComp\Example\M04.prc:22:17 Fehler (0500) "END WHILE" expected !
C: \EfkaComp\Example\A04.prc:23:7 Fehler (0500) "END." expected !

9.4 Loader

When starting the loader, the machine code stored in the download file is transmitted to the control. The data transmission progress is displayed in the message window.

The parameters of the serial interface can be set using the "FILE SETTINGS" menu.

9.5 Programming Example

The following cycle is programmed:
The motor is started by an impulse (sensor1) at input In5 and runs a distance of 15000 increments at a speed of 2000 rev./min.
After the stop, an output (actuator1) will be activated for 600 ms . Then the motor returns to its initial position at a speed of $4000 \mathrm{rev} . / \mathrm{min}$.

PROGRAM Example1
SYSTEM FP220AE

VAR

status :VALUE :=0;
ALIAS
Sensor1 : In5;
Actuator1: SetOut10;

BEGIN

WHILE (1)
SELECT (status) OF
CASE 0: IF (sensor1) THEN
RunIncrements(15000,2000,0);
status := 1;
END_IF;
CASE 1: IF (GetRestRunIncrements() < 10) THEN
TimerSetOut(timer1,600,actuator1,ON);
status := 2;
END_IF;
CASE 2: IF (GetTimer(Timer1) = 0) THEN
RunIncrements(15000,4000,1);
status:=3;
END_IF;
CASE 3: IF (GetRestRunIncrements() < 10) THEN
status :=4;
END_IF;
CASE 4: IF (NOT sensor1) THEN
status := 0;
END_IF;

END_SELECT;

END_W WILE;
END.

Please see user manual Compiler C200 for the description of syntax and commands.

10 Setting the Basic Functions

```
Note! The basic functions can be set manually on the control panel, or
    automatically using the download program created by the Compiler C200!
```


10.1 Direction of Motor Rotation

Function with or without control panel	Parameter		
Direction of motor rotation	(drE)	161	

Parameter 161 = $0 \quad$ Clockwise motor rotation (look at the motor shaft)
 Parameter $161=1 \quad$ Counterclockwise motor rotation

ATTENTION

If the motor is mounted differently, e. g. at a different angle or with gear, make sure that the value set by means of parameter 161 corresponds to the direction of rotation.

10.2 Maximum Speed Compatible with the Machine

Function with or without control panel	Parameter	
Maximum speed	$(\mathrm{n} 2)$	111

Note

See instruction manual of the machine manufacturer for the maximum speed of the machine.

10.3 Starting Characteristics

Function with or without control panel	Parameter
Starting edge	(ALF)

The drive acceleration dynamics can be adapted to the machine characteristic.

- Example: F-220 $=50 \rightarrow$ Acceleration $=50$ rev./min. per millisecond

With a high starting edge setting and, in addition, possibly high braking parameter values on a light machine, the characteristic may appear coarse. In this case, one should try to optimize the settings.

10.4 Braking Characteristics

Function with or without control panel	Parameter	
Braking effect	(br2)	$\mathbf{2 0 8}$

- Example: F-208 = 30 $\quad \rightarrow$ Braking effect $=50 \mathrm{rev}$. $/ \mathrm{min}$. per millisecond

The following applies to all setting values: the higher the value, the stronger the braking reaction!

10.5 Braking Power at Standstill

Function with or without control panel	Parameter	
Braking power at standstill	(brt)	153

- The braking power is effective at standstill
- The higher the set value, the stronger the braking power

10.6 Holding Power of Output VR

Function with or without control panel		Parameter
Time of full power	(t10)	$\mathbf{2 1 2}$
Holding power	(t11)	$\mathbf{2 1 3}$

Output VR is engaged by full power. Then the system switches automatically to partial power in order to reduce the load for the control and the connected consumer. Set the duration of full power using parameter 212 and the partial holding power using parameter 213.

CAUTION!

If the holding power is set too high, the consumer and the control may be permanently damaged. Please observe the permissible duty ratio (ED) of the consumer and set the appropriate value according to the table below.

Value	Duty ratio (ED)	Effect
1	1%	low holding power
100	100%	high holding power (full power)

10.7 Holding Power of Output FL

Function with or without control panel	Parameter	
Time of full power	(t10)	$\mathbf{2 0 3}$
Holding power	(t11)	$\mathbf{2 0 4}$

Output FL is engaged by full power. Then the system switches automatically to partial power in order to reduce the load for the control and the connected consumer. Set the duration of full power using parameter 203 and the partial holding power using parameter 204.

CAUTION!

If the holding power is set too high, the load and the control may be permanently damaged. Please observe the permissible duty ratio (ED) of the load and set the appropriate value according to the table below.

Value	Duty ratio (ED)	Effect
1	1%	low holding power
100	100%	high holding power (full power)

11 Setting the Input Switching Thresholds

Diagram representing the lower and upper switching thresholds of inputs IN1...IN10
(parameters 340-359)

Pa. 340
Pa. 342
Pa. 344
Pa. 346
Pa. 348
Pa. 350
Pa. 352
Pa. 354
Pa. 356
Pa. 358
Pa. 341
Pa. 343
Input IN1
Pa 345 IN2
Pa. 345
IN3
Pa. 347
IN4
Pa. 349
IN5
Pa. 35
IN6
Pa. 353 IN7
Pa. 355
IN8
Pa. 35
IN9
Pa. 359
IN10
Pa. 360
Pa. 361
LSM

Inputs $\mathrm{IN} 1-\mathrm{IN} 10$ can be switched to both +24 V and 0 V . These inputs work as window comparators with lower and upper limit.
The lower and upper limit of each input can be set individually using 2 parameters each.
Lower switching threshold (switch to OV): Below the set value the control logic recognizes "On" (switch closed); above the set value the control logic recognizes "Off" (switch open).
Upper switching threshold (switch to +24V): Below the set value the control logic recognizes "Off" (switch open); above the set value the control logic recognizes "On" (switch closed).
The factory setting of these parameters is $30 \% \approx 0.9 \mathrm{~V}$ (for the lower switching threshold) and $80 \% \approx 8.0 \mathrm{~V}$ (for the upper switching threshold).
When a micro switch is used, this factory setting works without problem if any of the two contacts is connected to 0 V or +24 V of the control.

However, the factory settings will not work if control elements with bipolar signals are connected, instead of switches, keys, or "open collector" elements.
These control elements switch one signal each between 0 V and +Vdd to the control input (e.g. 5 V .. 24 V).
In this case, the upper switching threshold must be set to 100 , or the lower switching threshold to 0 .

12 Programming 2 Position Signals per Motor Rotation

12.1 Setting the Reference Position (Parameter $270=0$)

The angular positions necessary on the machine are stored in the control. A reference position is needed in order to establish a relationship between position transmitter information and actual mechanical position.

The reference position must be set:

- for initial operation
- after replacing the motor

Setting the reference position on the control

- Input code number and select parameter 170.
- Press key E $\quad \rightarrow$ Display
- Press key $\mathbf{\gg} \quad \rightarrow$ Display

Turn motor shaft until rotating
\rightarrow Display
Po (character o rotating) character o goes off on the display.

- Then turn motor shaft to the reference position.
$\rightarrow \quad$ Set machine reference point
- Press key P once
$\rightarrow \quad$ Actual parameter number is displayed
- Press key \mathbf{P} twice
$\rightarrow \quad$ Exit programming at the technician level

Setting the reference position on the V810 control panel

- Input code number and select parameter 170.
- Press key E $\quad \rightarrow$ Display Sr1 [0]
- Press key $\gg \quad \rightarrow$ Display PoS0 o (character o rotating)

Turn motor shaft until rotating
\rightarrow Display
PoSO character o goes off on the display.

- Then turn motor shaft to the reference position.
$\rightarrow \quad$ Set machine reference point
- Press key \mathbf{P} once $\quad \rightarrow \quad$ Actual parameter number is displayed
- Press key \mathbf{P} twice $\quad \boldsymbol{Z}$ Exit programming at the technician level

Setting the reference position on the V820 control panel

- Input code number and select parameter 170.
- Press key E $\quad \rightarrow \quad$ Display
- Press key >>
\rightarrow Display
Turn motor shaft until rotating character o goes off on the display.
- Then turn motor shaft to the reference position.
- Press key \mathbf{P} once $\quad \rightarrow \quad$ Actual parameter number is displayed
- Press key P twice $\quad \rightarrow \quad$ Exit programming at the technician level

If error message A3 (reference position not set) appears, repeat the above setting sequence!

12.2 Setting the Positions on the Control (Parameter $270=0$)

If parameter $270=0$, the positions integrated in the motor are activated and can be set as follows:

- Input code number and select parameter 171.
- Press key E $\quad \rightarrow \quad[0]$ is displayed
- Press key $\gg \quad \rightarrow \quad$ P1E is displayed; set "position 1 On" on the motor shaft
- Press key E $\quad \rightarrow \quad$ P2E is displayed; set "position 2 On" on the motor shaft
- Press key E $\quad \rightarrow \quad \mathbf{P 1 A}$ is displayed; set "position 1 Off" on the motor shaft
- Press key E $\quad \rightarrow \quad \mathbf{P 2 A}$ is displayed; set "position 2 Off" on the motor shaft
- Press key \mathbf{P} twice $\quad \rightarrow \quad$ Exit programming at the technician level

12.3 Setting the Positions on the V810 Control Panel (Parameter $270=0$)

If parameter $270=0$, the positions integrated in the motor are activated and can be set as follows:

		Select parameter 171	\rightarrow	F - 171
E		Press key E	\rightarrow	[0]
"		Press key >> (key B). Display of the 1 st parameter value of position 1	\rightarrow	P1E140
+	-	If necessary, change parameter value by pressing key >> or $+/$-, or by turning the motor shaft (> 1 rotation)	\rightarrow	P1E XXX
E		Parameter value of position 2 appears on the display	\rightarrow	P2E 260
+	-	If necessary, change parameter value by pressing key >> or $+/$-, or by turning the motor shaft (> 1 rotation)	\rightarrow	P2E XXX
E		Parameter value of position 1A appears on the display	\rightarrow	P1A 080
+	-	If necessary, change parameter value by pressing key \gg or $+/$-, or by turning the motor shaft (> 1 rotation)	\rightarrow	P1A XXX
E		Parameter value of position 2A appears on the display	\rightarrow	P2A 400
+	-	If necessary, change parameter value by pressing key >> or $+/-$, or by turning the motor shaft (> 1 rotation)	\rightarrow	P2A XXX
P	P	Press the P key twice. Settings are completed. Exit programming.	\rightarrow	MC221A

12.4 Setting the Positions on the V820/V850 Control Panel (Parameter $270=0$)

If parameter $270=0$, the positions integrated in the motor are activated and can be set as follows:

Note

When setting the positions by turning the motor shaft, make sure that the displayed numerical value changes.

- The display unit of the set position values is "degrees".

12.5 Signal Output Position 1

- Transistor output with open collector
- Suitable e. g. for the connection of a counter
- An inverted signal is issued at socket ST2/20

12.6 Signal Output Position 2

- Transistor output with open collector
- Suitable e. g. for the connection of a counter
- An inverted signal is issued at socket ST2/21

12.7 Signal Output 512 Impulses per Rotation

- Transistor output with open collector
- Signal whenever a generator slot of the encoder is sensed
- 512 impulses per rotation of the motor shaft
- Suitable e. g. for the connection of a counter
- An inverted signal is issued at socket ST2/22

12.8 Use of a Hall Sensor Module HSM001

If the position signals are to be issued with respect to the driven shaft and the transmission ratio between motor shaft and driven shaft is not 1:1, the Hall sensor HSM001 must be used on the driven shaft. Parameter F-270 must be programmed to value 1 .

12.9 Transmission Ratio

Note

The transmission ratio must always be input, because only motors with integrated incremental transmitter will be used. The transmission ratio should be determined and set as precisely as possible!

Function with or without control panel	Parameter	
Transmission ratio between motor shaft and machine shaft	(trr)	$\mathbf{2 7 2}$

The transmission ratio can be selected within a range of $020 \ldots 255$ using parameter 272.
Value of parameter 272 $=\frac{\text { Motor speed }}{---------------\quad \text { Machine speed }} \times 100$

13 Service Functions

13.1 Signal Test

Function with or without control panel	Parameter
Input and output test	$(\mathrm{Sr} 4)$

Function test of external inputs and transistor power outputs with connected actuators (e.g. solenoids and solenoid valves).

13.2 Signal Test Using the V810/V820/V850

Input Test:

- Select parameter 173.
- V810 control panel: The above signals are indicated by means of arrows above the $2 \ldots 4$ keys. Inputs in1...in10 appear individually on the LC display. Several switches and/or keys must not be actuated at the same time (see control).
- V820/850 control panel: Inputs in1...in10 and signals "light barrier, sensor, generator impulse 1 and 2, positions 1 and 2" are displayed by means of arrows above the $1 . .10$ keys. Several inputs can be actuated and displayed at the same time.
- If several keys and/or switches are actuated at the same time, e.g. in3, in5, in6, in7, the least significant input will be displayed, e.g. in3.

V820/V850 Control Panel

V810 Control Panel

Note

If an input is active with open contact, the corresponding arrow lights up when the contact is open. If an input is active with closed contact, the corresponding arrow lights up when the contact is closed.

Output Test:

- Select the desired output using key $+/-$
- Enable the selected output using key >> on the V810 or the incorporated control panel
- Enable the selected output using the key at the bottom right on the V820/V850 control panel

Display	Assignment of the outputs	
$\mathbf{0 1}$	Output VR	on socket ST2/34
$\mathbf{0 2}$	Output FL	on socket ST2/35
$\mathbf{0 3}$	Output M1	on socket ST2/37
$\mathbf{0 4}$	Output M3	on socket ST2/27
$\mathbf{0 5}$	Output M2	on socket ST2/28
$\mathbf{0 6}$	Output M4	on socket ST2/36
$\mathbf{0 7}$	Output M5	on socket ST2/32
$\mathbf{0 8}$	Output M11	on socket ST2/31
$\mathbf{0 9}$	Output M6	on socket ST2/30
$\mathbf{0 1 0}$	Output M9	on socket ST2/25
$\mathbf{0 1 1}$	Output M8	on socket ST2/24
$\mathbf{0 1 2}$	Output M7	on socket ST2/23
$\mathbf{0 1 3}$	Output M10	on socket ST2/29

13.3 Display of the Signal and Stop Positions

Function with or without control panel	Parameter
Display of positions 1 and 2	$(\mathrm{Sr} 3)$

The position settings can easily be checked by means of parameter 172.

- \quad Select parameter 172
- With control panel, the control panel display shows "Sr3"
- Turn motor shaft according to the direction of motor rotation

V810/V820 control panel display

- Arrow above symbol "position 1" on the 4 key (V810) / on the 7 key (V820) is displayed corresponds to position 1
- Arrow above symbol "position 1" on the 4 key (V810) / on the 7 key (V820) is displayed corresponds to position 1A
- Arrow above symbol "position 2" on the 4 key (V810) / on the 7 key (V820) is displayed corresponds to position 2
- Arrow above symbol "position 2" on the 4 key (V810) / on the 7 key (V820) is displayed corresponds to position 2A

14 List of Parameters

14.1 Technician Level

Code no.
1907

Parameter		Designation	Unit	max	min	Preset	Ind.
110	n1	Positioning speed	RPM	390	70	200	
111	n2-	Upper limit setting range of the maximum speed	RPM	9900	400	4000	
118	n12	Automatic speed	RPM	9900	400	3500	
139	nIS	Display of machine speed On/Off		1	0	0	
153	brt	Braking power at machine standstill		50	0	10	
161	drE	Direction of motor rotation 0 = Clockwise rotation 1 = Counterclockwise rotation		1	0	1	
170	Sr1	Setting the reference position: - Press key E. - Press key \gg - Turn motor shaft until symbol on display goes off. $-\quad$Then set the motor shaft to the reference position $-\quad$Press key \mathbf{P} twice.					
171	Sr2	Setting the signal positions: 1E $=$ Start position 1 2E = Start position 2 $1 \mathrm{~A}=\quad$ End position 1 $2 \mathrm{~A}=\quad$ End position 2	degrees	359	0	$\begin{array}{r} 56 \\ 281 \\ 98 \\ 323 \\ \hline \end{array}$	
172	Sr3	Display on the V810 control panel: Pos. 1 to 1A (lefthand arrow above key 4 On) Pos. 2 to 2A (righthand arrow above key 4 On)					
172	Sr3	Display on the V820/V850 control panel: Pos. 1 to 1A (lefthand arrow above key 7 On) Pos. 2 to 2A (righthand arrow above key 7 On)					
173	Sr4	Checking of the signal outputs and inputs using the incorporated control panel or the V810/V820 control panels $01=$ Output VR on socket ST2/34 $02=\quad$ Output FL on socket ST2/35 $03=\quad$ Output M1 on socket ST2/37 $04=\quad$ Output M3 on socket ST2/27 $05=\quad$ Output M2 on socket ST2/28 $06=\quad$ Output M4 on socket ST2/36 $07=\quad$ Output M5 on socket ST2/32 $08=\quad$ Output M11 on socket ST2/31 $09=\quad$ Output M6 on socket ST2/30 $10=\quad$ Output M9 on socket ST2/25 $11=\quad$ Output M8 on socket ST2/24 $\begin{array}{ll}12= & \text { Output M7 on socket ST2/23 } \\ 13= & \text { Output M10 on socket ST2/29 }\end{array}$ OFF/ON = By actuating the switches connected to the control, the function of these switches is checked and displayed on the control. OFF is displayed with open switch and the activated input in1...i10 with closed switch.					
176	Sr6	Service routine 6 - Display of operating hours					
177	Sr7	Service routine 7 - Display of operating hours before the next service					
179	Sr5	Control program number with index and more identification numbers. Upon pressing the appropriate key the data will be displayed in succession. V810 control panel display example:					

14.2 Supplier Level

Code no. 3112

Parameter	Designation Unit	max	min	Preset	Ind.
203 t4	Time of full power of output FL	600	0	500	
204 t5	Holding power for output FL 1...100\% $\%$ 1% $\boldsymbol{\rightarrow}$ low holding power 100% $\boldsymbol{\rightarrow}$ high holding power	100	1	40	
208 br2	Braking effect when modifying the preset value (indicated values only with transmission ratio 1:1) Values with the MC221A control Values with the MC321A control	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	1 1	$\begin{aligned} & 35 \\ & 30 \end{aligned}$	
212 t 10	Time of full power of output VR $\quad \mathrm{ms}$	600	0	500	
213 t11	Holding power for output VR low holding power \% 1% \rightarrow high holding power 100% \rightarrow h	100	1	40	
217 t11	Hours before the next service \quad hours		0	0	
220 ALF	Accelerating power of the drive (indicated values only with transmission ratio 1:1) Values with the MC221A control Values with the MC321A control	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	1 1	$\begin{aligned} & 35 \\ & 20 \end{aligned}$	
270 PGm	Connection of a sensor e. g. light barrier sensor to light barrier socket B18/7. Selection of the desired function! $0=$ The positions are generated by means of the transmitter incorporated in the motor and can be set by means of parameter 171. $1=$ Setting the sensor to position 2. Set position 1 using parameter 271, starting from leading edge position 2. $2=$ Setting the sensor to position 2. Set position 1 using parameter 271, starting from trailing edge position 2. $3=$ Setting the sensor to position 1. Set position 2 using parameter 271, starting from leading edge position 1. $4=$ Setting the sensor to position 1. Set position 2 using parameter 271, starting from trailing edge position 1 . $5=$ No position sensor available. The drive stops unpositioned.	5	0	0	
272 trr	Transmission ratio between motor shaft and machine shaft (calculation formula see chapter 12.9) The transmission ratio should be determined and indicated as precisely as possible!	255	015	100	

Parameter		Designation	Unit	max	min	Preset	Ind.
340	1L	Lower switching threshold input in1	\%	100	0	30	
341	1H	Upper switching threshold input in1	\%	100	0	80	
342	2 L	Lower switching threshold input in2	\%	100	0	30	
343	2H	Upper switching threshold input in2	\%	100	0	80	
344	3L	Lower switching threshold input in3	\%	100	0	30	
345	3H	Upper switching threshold input in3	\%	100	0	80	
346	4L	Lower switching threshold input in4	\%	100	0	30	
347	4H	Upper switching threshold input in4	\%	100	0	80	
348	5L	Lower switching threshold input in5	\%	100	0	30	
349	5H	Upper switching threshold input in5	\%	100	0	80	
350	6L	Lower switching threshold input in6	\%	100	0	30	
351	6H	Upper switching threshold input in6	\%	100	0	80	
352	7L	Lower switching threshold input in7	\%	100	0	30	
353	7H	Upper switching threshold input in7	\%	100	0	80	
354	8L	Lower switching threshold input in8	\%	100	0	30	
355	8L	Upper switching threshold input in8	\%	100	0	80	
356	19	Lower switching threshold input in9	\%	100	0	30	
357	19	Upper switching threshold input in9	\%	100	0	80	
358	10L	Lower switching threshold input in10	\%	100	0	30	
359	10H	Upper switching threshold input in10	\%	100	0	80	
399	cFP	Delete download program memory		3112			
401	EEP	Immediate storage of all changed data - Input code number 3112 after power On - Press key E - Input parameter 401 - Press key E - Set display from 0 to 1 - Press key E or P - All data are stored		1	0	0	

15 Error Displays

General Information			
On the control	On the V810	On the V820	Signification
A2	-StoP- blinking	- StoP- blinking + symbol display	Machine run blockage
A3	InF A3	InF A3	Reference position is not set

Serious Condition

On the control	On the V810	On the V820	Signification
E1	InF E1	InF E1	The external pulse encoder is defective or not connected.
E2	InF E2	InF E2	Line voltage too low, or time between power off and power on too short.
E3	InF E3	InF E3	Machine blocked or does not reach the desired speed.
E4	InF E4	InF E4	Control disturbed by deficient grounding or loose contact.

Hardware Disturbance			
On the control	On the V810	On the V820	Signification
H1	InF H1	InF H1	Commutation transmitter cord or frequency converter disturbed.
H2	InF H2	InF H2	Processor disturbed

16 Operating Elements of the V810 Control Panel

The V810 control panel is supplied with the no. 1 slide-in strip above the keys. For different functions the strip can be replaced with another user-created one.

Function Assignment to the Keys

Key P =
Key E =
Key + =
Key - =
Keys 1-4 =
Keys $A+B=$

Call or exit of programming mode
Enter key for modifications in the programming mode Increase in the value indicated in the programming mode Decrease in the value indicated in the programming mode

User-customized assignment User-customized assignment

17 Operating Elements of the V820/V850 Control Panel

The V820/V850 control panel is supplied with the no. 1 slide-in strip above the keys. For different functions the strip can be replaced with another user-created one.

Function Assignment to the Keys

Key $\mathrm{P}=$
Call or exit of programming mode
Key E =
Key + =
Enter key for modifications in the programming mode Increase in the value indicated in the programming mode
Key - = Decrease in the value indicated in the programming mode
Keys 0-9
Numerical input in the programming mode / user-customized assignment
Keys A + B
User-customized assignment

Sfka

FRANKL \& KIRCHNER GMBH \& CO KG
SCHEFFELSTRASSE 73 - 68723 SCHWETZINGEN - GERMANY
PHONE: +49-6202-2020 - FAX: +49-6202-202115
email: info@efka.net - http://www.efka.net

Efkn

OF AMERICA INC.
3715 NORTHCREST ROAD - SUITE 10 - ATLANTA - GEORGIA 30340
PHONE: +1 (770) 457-7006 - FAX: +1 (770) 458-3899 - email: efkaus@bellsouth.net

Efkn

ELECTRONIC MOTORS SINGAPORE PTE. LTD.
67, AYER RAJAH CRESCENT 05-03 - SINGAPORE 139950
PHONE: +65-67772459 - FAX: +65-67771048 - email: efkaems@efka.net

1(1)-160305-A (402312 EN)

